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Ils ont montré en particulier que si f est bornée dans un inter-
valle contenant le point z, la série de Fourier est ou bien som- .
mable au point z pour toute moyenne de Cesaro d’ordre ¢>0 ou
bien n’est sommable par aucune. La condition nécessaire et
suffisante de sommablhté est dans ce cas: hm 0. () = O1

§ 5. LES SERIES DE FOURIER RESTREINTES.

1. En général la série obtenue par dérivation terme a terme
d’une série de Fourier diverge partout. Mais M. FEjEr? a
- déja établi que 'on peut encore, & ’aide des moyennes arith-
métiques, remonter de la série dérivée & la dérivée de la généra-
trice. M. W. H. Younc? a montré que la série dérivée terme &
terme de la série de Fourier d’une fonction & variation bornée
converge presque partout (G, d),d > 0, vers la dérivée de la fonc-
tion. Plus généralement, il a établi que 4: '

a) la convergence (C, 1) de la prem1ere dérivée (formelle) d’une |
série de Fourier (c’est- a-dire la- série obtenue par dérivation -
terme a terme) en un point est une propriété locale; |

b) qu’il en est de méme de la convergence G, p) de la P 1éme‘
dérivée. ‘ S

P £ .
Cf@) ‘est
dxP

continue et a variation bornée dans le V01smage d’un pomt la |
- p-iéme dérivée de la série de Foumer de f converge (C p) vers
& . |

dx

11 resulte de ces propositions que si, par exemple,

‘au point cons1dere

S 1Hardy ‘and Littlewood 3; M Riesz 7 -— 2Fejér 4 --3W H Young 20 —
AAWHYoungsi.,; SR y e L » SRR




SERIES TRIGONOMETRIQUES 37

2. Ces résultats ont conduit M. Young a introduire sous le
nom de séries de Fourier restreintes de classe p une classe de
séries trigonométriques qui sans étre nécessairement des séries
de Fourier s’en rapprochent beaucoup par leurs propriétés et
qu’il caractérise par les deux propriétés suivantes:

I. La série trigonométrique obtenue en intégrant p-fois
terme & terme la série donnée (on laisse de ¢6té le terme constant)
est une série de Fourier dont nous désignerons par F(z) la géné-
ratrice. «

II. Dans un intervalle partiel (a, b) d’un intervalle de pério-
dicité, F(z) est I'intégrale p-uple d’une fonction f(z) intégrable
dans (a, b). On suppose donec que dans (a, b)

Fla) = f(;;‘/’fd.z o fla) =S

La série trigonométrique donnée est alors appelée par
M. Young une série de Fourier de classe p restreinte d intervalle
(a, b) et f(z) la fonction associde & cette série dans l'intervalle
(a, b). La raison de cette dénomination est que dans (a, b) et
relativement & la sommation de Cesaro d’ordre p une telle série
-a exactement les mémes propriétés de convergence que la série
de Fourier d’une fonction intégrable dans (0,2n) et coincidant
avec f(z) dans (a, b) L

3. Pour pouvoir donner pour une série de Fourier restreinte de
classe p des critéres de convergence relatifs & une sommation
d'ordre g<p, il est nécessaire d’ajouter une hypothése supplé-
mentaire relative non plus seulement & Iintervalle (@, b) mais
a tout lintervalle (0,27). Comme hypothése supplémentaire,
M. W. H. Young ajoute la condition

b

n

= 0 .

lim = lim

nsw pf— n=w nf—
Les conditions de convergence (C, p—1) dans (a, b) d’une telle
scrie sont alors les mémes que celles de la convergence (G, p —1)

de la.série de Fourier d’une fonction intégrable dans (0,27) et
coincidant avec f(z) dans (a, b) 2.

1'W, H. Young 31. — 2 W, H. Young 23, 33.
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En particulier .donc, si p =1, nous voyons qu’une série de
Fourier restreinte de classe 1, telle que a,~ 0, b,~ 0 jouit
dans P’intervalle de restriction et relativement & la convergence
“ordinaire de toutes les propriétés d’une.série de Fourier.

M. Younc a fait de ces séries une application importante &
Pétude de la convergence des séries de polynomes de Legendre ?, 1
“des séries de fonctions de Bessel? et de certaines séries trigono-
métriques non harmoniques 3. Une autre application intéres-
sante ¢ généralise un théoréme de Farou ® affirmant qu’une
série de puissances Za,z", telle que a, - 0, de rayon de
convergence 1, converge sur le cercle de convergence en tout
point de régularité de la fonction analytique engendrée par la
série. Ce théoréme de Fatou a été dans sa démonstration nota-
blement simplifié par M: M. Riesz ¢ qui a montré de plus que
la convergence est uniforme sur un arc de régularité et qui a,

. o, o v P all
en' remplagant la condition a,~ 0 par la condition — -+ 0

(8 >0), montré que le théoréme subsiste, & condition de rem-

placer la convergence ordinaire par la convergence (G, d). Si
a

=)
-n
(G, 6) aux points de regularlte.

< M, les sommes partlelles de la série restent bornées

§ 6. AUTRES PROCEDES DE SOMMATION.

1. 11 est quelquefois utile d’introduire d’autres procédés de
sommation équivalents au procédé de Cesaro. C’est ainsi qu’on
peut, pour les indices & positifs entiers, définir avec HOLDER7 un
procédé de sommation que MM. Kxopp8 et ScHNEE ® ont
montré equwalent au procédé de sommation (G, 8), CHAP-

MAN10, M. Riesz! et W. H. YounG!? ont étudié de tels procédés. -

2. M de la VALLEE Poussin13 a donné un procedé nouveau

pour ‘sommer une série 2 Un y 11 cons1ste a donper comme

: 1W H Young29 30. -—-SW H. Young35 -—-BW H, Youngsls ——-4-W H. Young o
- 82.— 5 Fatou 1. — & M. Riesz 8, 5, 6. — 7 Holder, — 8 Knopp 1, 2, 8. i~ 9 Schiee;
voir aussi Landau {, 2, — 10 Chapman 1. —1 M. Rtesz 1,2; volr aussi Hardy and Riesz
1 — 12 W H. Young 3 - 18 Vallée—Poussin 2 :

/
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