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30 | M. PLANCHEREL

intégrable, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si f(x) est de carré
intégrable, les suites partielles Su, (2) de la série de Fourier
convergent presque partout vers f(x) lorsque p - o si

Il
P S k>
P
k étant une constante 1.
Aprés que MM. Fatou?, JERoscH et WEYL 3, WEYL ¢ eurent
démontré certains résultats moins généraux, M. W. H. Young®

établit que si 2 A, est une série de Fourier, 2— (¢ > 0) est une
n

série de Fourier convergeant presque partout. M. HArpY?® a
réussi & faire voir que dans ce résultat n¢ peut étre remplacé par’
log n. Dans le cas spécial des fonctions de carré intégrable,
MM. KoLMOGOROFF. et SELIVERSTOFF 7 ont montré que la con-
vergence de 3 (a) + b?) (log n)!*+3(3 > 0) entraine la convergence
« presque partout » de la série de Fourier 3 A, et M. MENcHOFF 8
a montré que le méme résultat a lieu si 3 (| a,,‘lz*e + | bn [*7F),
(e > 0), converge. |

10. On ne sait pas grand chose sur les propriétés que doit
avoir f(x) pour que sa série de Fourier soit absolument conver-
gente. M. S. BERNSTEIN ® a cependant démontré que si f(z) est
a variation bornée et satisfait uniformément dans tout I'intervalle -

(0,27) & une condition de Lipschitz d’ordre « < %, sa série de

Fourier est absolument convergente; si « > +, il y a des fonctions
dont la série de Fourier n’est pas absolument convergente.

§ 4 LA SOMMATION DES SERIES DE FOURIER PAR LES MOYENNES
DE GESsARro. ‘

1. On peut toujours remonter d’une série de Founer — c’est-
a-dire de la suite des constantes de Foumer — & la génératrice

3

1 Kolmogoroﬂ.’ 2. — 2 Fatou 1.—87J erosch et Weyl — 4 Weyl. —5 'W. H. YOung: :
- 41, —9 Hardy i, —7% A Kolmogoroﬂ’ et G Seliverstoﬁ' — 8 Menchoﬂ’ 3 - 98, Bern-

. stein, -
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en intégrant terme & terme la série et prenant ensuite la dérivée
de la fonction somme. Mais ces opérations constituent un double
passage a la limite. FEJER* a montré que 'on peut remonter plus
simplement de la suite des constantes de Fourier & la généra-
trice 4 'aide des moyennes arithmétiques s (z) des sommes

partielles s, ()
n
s, (x) = E A, (15)
0

So b s d s & ,
(1) N 0 1 IL_ . o r
s () = " — A, + 2 <1 . 1>Av o (16)

'J=1

11 a fait voir que s’ (x) converge vers [l + ) j flx =9 en tout

point ou cette expression existe, en particulier donc en tout
point de continuité de f(x) et que la convergence est uniforme
dans tout intervalle entiérement intérieur & un intervalle de
continuité de f(x). Plus généralement, s’ (z) converge encore

vers f(x) si2

. |
lim —
t=0 ¢

t
f | flx + 2u) + flx — 2u) — 2f(x)|du = 0 .
0
Or, cette limite est nulle presque partout. Les moyennes arith-
métiques s\ (z) convergent donc presque partout vers f(z).

L’important résultat de FEsEr a étéle point de départ de toute
une série de recherches dont le caractére général est 'introduc-
tion de la théorie de la sommabilité des séries divergentes dans
Pétude des séries de Fourier. Série trigonométrique et série de
puissances étant en étroite relation, puisque la premiére est la
partie réelle ou imaginaire d’une série de puissances sur un
vercle, il est naturel d’appliquer aux séries trigonométriques les
procédés de sommation employés dans D’étude des séries de
plissances.

2. La méthode de sommation qui s’est montrée la plus féconde
sl la méthode des moyennes arithmétiques de Cesaro 3. Soit

y + uy + ...+ w, 4 ...
—

' Fejér 1. — 2 Lebesgue 2, 6. — 3 Cesaro 1.
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une série quelconque convergente ou non. Formons la serle
de puissances '

flt)y = uy 4+ wit + .o 4 u, " -+

et supposons son rayon de convergence égal & 1. On sait, depuis
Abel, que si Zu, converge et a pour somme s, lim f(f) = s.

t=>1—0

Mais on connait de nombreux exemples ou, la limite considérée
de f(t) existe et ou Zu, diverge. 1l est alors naturel de convenir
de regarder cette limite comme somme de la série divergente:
c’est le principe du procédé de sommation de Poisson sur lequel
nous reviendrons plus loin (§ 6). Notons simplement que la

formation de lim f(t) exige en réalité un double passage & la
t=->1—0

limite & partir de la suite u,, car la formation de f(¢) en inclut
déja un. CEsARO a montré comment, trés souvent, on peut se
restreindre & un seul passage & la limite, et celd a I’aide du
théoréme suivant !:

Soient @y, @y, .oey Bny oo Poy P1s +oes Pay ... deux suites illimitées.
Soit p,,>0 n~0 1, 2,.

Supposons que la série Epnt” converge pour |t| < 1 et

n=0

. ,
diverge pour ¢t = 1. Si lim — = s existe, alors 2’ a,t* converge

n-+w Pn
pour [¢| <1 et
Eant"

' 0
lim —— — s .
t=> 1—0 *®

n
pnt
0

Nous appliquerons ce théoréme au cas ol

Pod pit+ o+ p " = (1 — g 3> —1)

-]

(1 — "t’)—(1+o“) }: u, t" .
-

Il

ay + at 4 ... 4 a,t" + ..

1 Cesaro 2.
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Par conséquent,

~ o~ 1 o ’
Py = 1 sl = (17)
n ll +1 Iw ) + ) n ’
et
n
., N — ) o
((” - (JHJ;)_.J uv e SII()‘ . (lb}

u=10

Le théoréme de Cesaro montre donc: si
existe, alors

Ce résultat conduit a la définition suivante de la sommation

de Cesaro d’ordre o9, (0 > — 1).

La série 2 u, est dite sommable (C, d), et a pour somme s si
(3 ,
S S _ E el B, = Z n—v+o+Nl(n40
T atdr T cdl T e — oy )51
) n V=20

n
RN AT S P R
n -+ o n—+ 6 —1 ”+°*—v+l
=0

converge vers s lorsque n - oo,

La convergence ordinaire est identique a la sommabilité (C, 0).
Essentiel est le fait qu’une série sommable (C, d,) est sommable
(C, d) vers la méme somme lorsque ¢ > J,. L.a somme formelle
de deux séries sommables (C, ¢) est encore sommable (G, 0) vers
la somme des sommes (C, &) des deux séries. Le produit formel,
d’apres la regle de Cauchy, de deux séries dont I'une est som-
mable (C, @) et autre (C, ¢') est sommable (C, ¢ + 9" -+ 1) vers
le produit des deux sommes .

La suite continue des ordres de sommation de Cesaro a ’avan-
tage de constituer une échelle de convergence. Car, pour toute

(19

i Ces4ro 1, 2; Chapman 1, 2.

24

[’Enseignement mathém., 24¢ annde; 1924 et 1925.
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série, il existe un ordre d, (éventuellement 0y = — 1 ou §, = o)
tel que (si & 3= ®) la série soit sommable (C, 8) pour & > J, et
* (si &y 5% — 1) ne soit pas sommable (C, ) pour ¢ < d,:

3. L’étude systématique de la sommation (C, d) des séries
de Fourier a conduit aux résultats suivants ?.

La série de Fourier d’une fonction intégrable converge (C, d)

(6 > 0) vers % [f(x + 0) 4+ f(x—0)] en tout point ou cette
expression existe2 Si f(x) est continue en chaque point z d’un
intervalle ¢ < 2 <b, la convergence est uniforme dans cet
intervalle. Ceci n’a plus lieu, en général, si & < 0. Le résultat
primitif de Fejér est contenu dans le précédent (8 = 1).

Si |

t

lim-":- | fix + 2u) + f(x — 2u) — 2f(x) | du = 0.

t=> 0
- 0

la série converge (C, 9), (3 > 0)3. C’est pour ¢ = 1 le résultat de
Lebesgue énoncé plus haut. M. Harx 4 a fait voir que ce résultat
ne subsiste plus, en général, si 'on remplace la condition précé-
dente par la méme débarrassée du signe de valeur absolue sous
- Dintégrale; il subsiste, par contre, si ’on remplace la sommation
(G, 9) par la sommation (C, 1 + 9) 8. -

Si g est un entier positif et s1 d > ¢, la série de Fourier converge
(C d‘) vers la q ieme dérivée généralisée de la g-iéme intégrale

f ffdx

La lumlere que ces théorémes jettent sur la nature de la con-
vergence des séries de Fourier est encore plus grande lorsqu’on
introduit pour les sommes si? des constantes p(® analogues
aux constantes de Lebesgue p = p(®, définies comme borne
supérie‘ure de |59 (x)| dans le champ des fonctions f telles
que | f(x)]|.< 1. p'@) est une fonction bornée de n pour d > 0 et
pour ¢ > 1 on a p'd = 1. Les sommes partielles s de la série
de _Foumer d’une fonotion bornée f(z) sont donc bornées pour
0> 0 et lorsque 0 > 1 elles sont toujours comprises entre la borne
inférieure et‘la bome supérieure de f(x). on peut ‘se‘demander

1 Chapmani 23 Gronwa114 Hardy 1; M. Riesz 1, 7; 'W. H. Young 8; Kogbetliantz
2. — 2 M. Riesz 1, 7; Chapman 2; Gronwall 4; W H Young 3. — 8Hardy1 e
vy4Hahn2-——5WHYoung2——-6WHYoung3 : ‘
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ce qu'il advient du phénoméne de Gibbs pour une sommation
d’ordre & < 1; la question a été traitée par H. CRAMER?! qui
établit Pexistence d’une valeur positive k inférieure a 1, telle
que lorsque ¢ < k le phénomene de Gibbs a lieu et que lorsque .
0 > k il n’a pas lieu.

4. La convergence ordinaire et a fortior: la convergence (G, d)
(0 > 0) d’une série de Fourier est une propriété locale. Ce n’est
plus le cas, en général, lorsque ¢ < 0. La convergence en un point
dépend alors non seulement du comportement de la fonction
dans le voisinage de ce point, mais de son comportement dans
tout l'intervalle (0, 2m). C’est une propriété non plus locale,
mais globale.

L’influence des points singuliers de la fonction sur les proprié-
tés de convergence de sa série de Fourier est mise en évidence
dans le résultat de Kogbetliantz?: Si f(z) est & variation bornée
dans les intervalles (0, £—¢) et (&£ + ¢, 27) et si dans Pintervalle
(£ — ¢, £+ ¢) elle peut se mettre sous la forme

o le—E7" + o(a)

©(x) étant & variation bornée dans (£ —e¢, £ 4 ¢), ¢, une constante
el 0<a<1, la série de Fourier est sommable (C, 9), > «—1 en

tout point = = £ vers —1— [f(x + 0) 4+ f(xz — 0)]. Par contre, elle

n’est ‘plus sommable (C, d) en ce point si d <a—1. Les moyen-
nes s(? d’ordre ¢ <a—1 ne sont pas bornées en n; par contre,
celles ordre ¢ = o — 1 sont bornées en n, mais ne convergent
pas pour n~ . Il est d’autant plus remarquable que si la fone-
lion est & variation bornée dans tout Iintervalle (0, 2r) la série
converge (G, 0) partout vers %[}‘ (x 4- 0) 4 f(z — 0)] lorsque
o> — 183,

0. HarpY et LirrrEwooD 4 se sont posé la question de trouver
es conditions nécessaires et suffisantes pour qu’une série de
Fuurier soit sommable au point z par une sommation de Cesaro
1 ordre suffisamment élevé. Ils sont arrivés au résultat suivant:
La condition nécessaire et suffisante pour que la série de Fou-
rier d’une fonction mtégrable f (z) soit sommable par une moyenne

!

! Cramer. — 2 Kogbetliantz. — 3 W. H. Young 15. — 4 Hardy and Littlewood 3.
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de Cesaro en un point z est qu il existe un entler k tel que 51 |
‘l’on pose EE
. e(t) = f(.x -+ t) + f(.x.-—— t — 2f(x)

t '
- S ‘
= 7f<p(t)dt , %(t f?l(t KT
o

lim cpk(t) = 0.

t=0

on ait

Ils ont montré en particulier que si f est bornée dans un inter-
valle contenant le point z, la série de Fourier est ou bien som- .
mable au point z pour toute moyenne de Cesaro d’ordre ¢>0 ou
bien n’est sommable par aucune. La condition nécessaire et
suffisante de sommablhté est dans ce cas: hm 0. () = O1

§ 5. LES SERIES DE FOURIER RESTREINTES.

1. En général la série obtenue par dérivation terme a terme
d’une série de Fourier diverge partout. Mais M. FEjEr? a
- déja établi que 'on peut encore, & ’aide des moyennes arith-
métiques, remonter de la série dérivée & la dérivée de la généra-
trice. M. W. H. Younc? a montré que la série dérivée terme &
terme de la série de Fourier d’une fonction & variation bornée
converge presque partout (G, d),d > 0, vers la dérivée de la fonc-
tion. Plus généralement, il a établi que 4: '

a) la convergence (C, 1) de la prem1ere dérivée (formelle) d’une |
série de Fourier (c’est- a-dire la- série obtenue par dérivation -
terme a terme) en un point est une propriété locale; |

b) qu’il en est de méme de la convergence G, p) de la P 1éme‘
dérivée. ‘ S

P £ .
Cf@) ‘est
dxP

continue et a variation bornée dans le V01smage d’un pomt la |
- p-iéme dérivée de la série de Foumer de f converge (C p) vers
& . |

dx

11 resulte de ces propositions que si, par exemple,

‘au point cons1dere

S 1Hardy ‘and Littlewood 3; M Riesz 7 -— 2Fejér 4 --3W H Young 20 —
AAWHYoungsi.,; SR y e L » SRR
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