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mtëgvobAQ, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si est de carré
intégrable, les suites partielles sn (x) de la série de Fourier

convergent presque partout vers f(x) lorsque oo si

• Vhi >A.>in

k étant une constante1.
Après que MM. Fatou2, Jerosch et Weyl3, Weyl4 eurent

démontré certains résultats moins généraux, M. W. H. Young5

établit que si .2Anestune série de Fourier, — (e > 0) est une
nB

série de Fourier convergeant presque partout. M. Hardy6 a
réussi à faire voir que dans ce résultat peut être remplacé par
log n.Dans le cas spécial des fonctions de carré intégrable,.
MM. Kolmogoroff et Seliverstoff 7 ont montré que la
convergence de 2 (a* + &*) logn)l+ ^(d > 0) entraîne la convergence
« presque partout » de la série de Fourier et M. Menchoff 8

a montré que le même résultat a lieu si 2(| + | bn |2""s)>

(e > 0), converge.
10. On ne sait pas grand chose sur les propriétés que doit

avoir f(x) pour que sa série de Fourier soit absolument convergente.

M. S. Bernstein9 a cependant démontré que si f(x).est
à variation bornée et satisfait uniformément dans tout l'intervalle

1

(0,27i) à une condition de Lipschitz d'ordre a < y, sa série de

Fourier est absolument convergente; si a > il y a des fonctions

dont la série de Fourier n'est pas absolument convergente.

§ 4. La sommation des séries de Fourier par les moyennes
de Gesàro.

1. On peut toujours remonter d'une série de Fourier — c'est-
à-dire de la suite des constantes de Fourier — à la génératrice

i Kolmogoroff 2. — 2 Fatou 1. — 8 Jerosch et Weyl. — 4 Weyl. — ß W. H. Young
11. — 6 Hardy 1. — A. Kolmogoroff et Gr.Seliverstoff.— 8 Menchoff 3. — • S. Bernstein.
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en intégrant terme à terme la série et prenant ensuite la dérivée

de la fonction somme. Mais ces opérations constituent un double

passage à la limite. Fejér1 a montré que l'on peut remonter plus

simplement de la suite des constantes de Fourier à la génératrice

à l'aide des moyennes arithmétiques s^(x) des sommes

partielles sn(x)
n

2Ay (15^

0

•r n +
+

+ *.+2 (« -
v=l

TT C ' ' (1)I\/ "i- Ö) 14.11 a fait voir que s), (x)convergevers - ^ en tout

point où cette expression existe, en particulier donc en tout
point de continuité de f(x) et que la convergence est uniforme
dans tout intervalle entièrement intérieur à un intervalle de

continuité de f(x).Plusgénéralement, scJ} (x) converge encore
vers /(x)si2

t

lim— Ç | f{x-j-2u) -f- f(x — 2 — 2 | du — 0
t-> o t J

o

Or, cette limite est nulle presque partout. Les moyennes
arithmétiques s(n(x)convergent donc presque partout vers f(x).

L'important résultat de Fejér a été le point de départ de toute
une série de recherches dont le caractère général est l'introduction

de la théorie de la sommabilité des séries divergentes dans
l'étude des séries de Fourier. Série trigonométrique et série de
puissances étant en étroite relation, puisque la première est la
partie réelle ou imaginaire d'une série de puissances sur un
cercle, il est naturel d'appliquer aux séries trigonométriques les
procédés de sommation employés dans l'étude des séries de
puissances.

F La méthode de sommation qui s'est montrée la plus féconde
est la méthode des moyennes arithmétiques de Cesàro 3. Soit

11aF111 F ••• F un F

1 Eejér 1. 2 Lebesgue 2, 6. — 3 Cesàro 1.
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une série quelconque, convergente ou non. Formons la série
de puissances

f[t)z=zW0 -f- W, t4"••• -f" *F

et supposons son rayon de convergence égal à 1. On sait, depuis
Abel, que si 2un converge et a pour somme s, lim/(£) s,

t -f 1—0

Mais on connaît de nombreux exemples où la limite considérée
de f(t) existe et où 2un diverge. Il est alors naturel de convenir
de regarder cette limite comme somme de la série divergente:
c'est le principe du procédé de sommation de Poisson sur lequel
nous reviendrons plus loin (§ 6). Notons simplement que la
formation de lim/(£) exige en réalité un double passage à la

*-1—0
limite à partir de la suite car la formation de / (t) en inclut
déjà un. Cesàro a montré comment, très souvent, on peut se

restreindre à un seul passage à la limite, et celà à l'aide du
théorème suivant1 :

Soient a0, %,..., a«,...; p0,plt...,p,n deux suites illimitées.
Soit pn>0, n0, 1, 2,

oo

Supposons que la série ^ pntnconvergepour < 1 et
n=0

oo
vv

diverge pour t1. Si lim — sexiste, alors antn converge
n-*«s Pn q*

pour \t\<1et
oo

tn2 a t'n
0

lim —
*- î—o °°_

tn
n2'

0

Nous appliquerons ce théorème au cas où

p0 + ptt + + Pntn + (1 - <r(1+3> (« > - 1)

00

aoat t+ ••• + an tn+ rr (1 — t) untn
0

i Cesàro 2.
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Par conséquent,

p -CL" +.8 +±L c"1'1 (i7)rm +1)F(S + 1) ~ " 1
-

et

«,,=2C-v'«v Sf (18,

-J=0

Le théorème de Cesàro montre donc: si

gfçj1)

i im 'V
/z-*oe C<^

existe, alors
oo

im "S? u tn
1—0 Ä«/

1

l—i

Ce résultat conduit à la définition suivante de la sommation
de Cesàro $ordre â, (à > — 1).

La série ^ un est dite sommable (C, $), et a pour somme s si
o

c(r?) ,l /ho: H

Jrj>) n n—j 1 ' ,l — v ~f" 0 ~~f~ L F ^ -f- 1

s» — (^7 """jMjr ~~ TT+Tjf(«"+''â"+ïj0
(19)

i- Mf, '' s a
n N o/ \ n -{- o — 1 / \ n -j- o —• v -{— L

v — o

converge vers 5 lorsque n •+ co.

La convergence ordinaire est identique à la sommabilité (C, 0),
Essentiel est le fait qu'une série sommable (C, t?0) est sommable
(C, §) vers la même somme lorsque à > <J0. La somme formelle
de deux séries sommables (C, 5) est encore sommable (C, $) vers
la somme des sommes (C, $) des deux séries. Le produit formel,
d'après la règle de Cauchy, de deux séries dont l'une est
sommable (C, S) et l'autre (C, $') est sommable (C, â + à' + 1) vers
le produit des deux sommes1.

La suite continue des ordres de sommation de Cesàro a l'avantage

de constituer une échelle de convergence. Car, pour toute

1 Cesàro 1, 2; Chapman 1, 2.

I,'Enseignement ma the m., 2V année; 192't et 1925.
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série, il existe un ordre 80(éventuellement <î0 — — 1 ou $0 éé)

tel que (si 80=?£ co) la série soit sommable (C, pour > $0 et
(si 80^ —1) ne soit pas' sommable (C, pour < <î0.

3. L'étude systématique de la sommation (C, des séries
de Fourier a conduit aux résultats suivants *.

La série de Fourier d'une fonction intégrable converge (G,
1

(<î> 0) vers 2" [/(^ + 0) + f(x—0)]en tout point où cette

expression existe2. Si f(x) est continue en chaque point d'un
intervalle a <, x<,b,laconvergence est uniforme dans cet
intervalle. Ceci n'a plus lieu, en général, si 0. Le résultat
primitif de Fejér est contenu dans lé précédent — 1).

Si
t ;

lim — f I f(x-{- f(x 2 —2' 0
o * J

o

la série converge (C, 5), (8> 0) 3. C'est pour — 1 le résultat de

Lebesgue énoncé plus haut. M. Hahn 4 a fait voir que ce résultât
ne subsiste plus, en général, si l'on remplace la condition précédente

par la même débarrassée du signe de valeur absolue sous

l'intégrale; il subsiste, par contre, si l'on remplace la sommation
(C, d)par la sommation (C, 1 + 5.

Si .y est un entier positif et si 8>y, la série de Fourier converge
(C, 8)vers la y-ième dérivée généralisée de la y-ième intégrale

OC 00

f ffdx dx6.
La lumière que ces théorèmes jettent sur la nature de la

convergence des séries de Fourier est encore plus grande lorsqu'on
introduit pour les sommes sWdesconstantes pWanalogues
aux constantes de Lebesgue pndéfinies Comme borne

supérieure de | (x)|dans le champ des fonctions / telles

que ] f(x)I1. p\?)estune fonction bornée de pour > 0 et
pour 8i> 1 on a pW 1. Les sommés partielles de la série
de Fourier d'une fonction bornée fsont donc bornées pour
8>"0 et lorsque 8^>i elles sont toujours comprises entre la borné
inférieure et la borne supérieure de On peut se demander

i Chapman 1, 2; Oronwall 4; Hardy 1; M. Riesz 1, 7 ; W. H. Young 3; Kogbetliantz
2. — 2 M. Riesz 1, 7; Chapman 2; Cronwall 4; W. H» Yoùng 3. — 8 Hardy 1. —
^ Hahn 2. — * W. H. Young 2, — 6 W. H. Young 3.
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ce qu'il advient du phénomène de Gibbs pour une sommation

d'ordre d < 1; la question a été traitée par H. Cramer1 qui
établit l'existence d'une valeur positive inférieure à 1, telle

que lorsque S < k le phénomène de Gibbs a lieu et que lorsque
S > k il n'a pas lieu.

4. La convergence ordinaire et a fortiori la convergence (C, <î)

{è> 0) d'une série de Fourier est une propriété locale. Ce n'est
plus le cas, en général, lorsque d<0. La convergence en un point
dépend alors non seulement du comportement de la fonction
dans le voisinage de ce point, mais de son comportement dans

tout l'intervalle (0, 2n). C'est une propriété non plus locale,
mais globale.

L'influence des points singuliers de la fonction sur les propriétés
de convergence de sa série de Fourier est mise en évidence

dans le résultat de Kogbetliantz2: Si f(x) est à variation bornée
dans les intervalles (0, £— e) et (£ + e, 2n) et si dans l'intervalle
(£ — e, £ + s)ellepeut se mettre sous la forme

co ix — na + ?(*)

y {x) étant à variation bornée dans (£ —• s, £ + g), une constante
et 0<a<l, la série de Fourier est sommable(C, $), —1 en

tout point x^£ vers ^ [f(x+ 0) + —- 0)]. Par contre, elle

n'est plus sommable (C, d)en ce point si d a — 1. Les moyennes
sjcO d'ordre 5 —1 ne sont pas bornées en n\ par contre,

celles d'ordre S a— 1 sont bornées en mais ne convergent
pas pour n oo. Il est d'autant plus remarquable que si la fonction

est à variation bornée dans tout l'intervalle (0, 2tr) la série

converge (C, partout vers ^[f{x + 0) +f(x — 0)] lorsque
y > — 13.

5. Hardy et Littlewood 4 se sont posé la question de trouver
les conditions nécessaires et suffisantes pour qu'une série de
d uurier soit sommable au point x par une sommation de Cesàro
d ordre suffisamment élevé. Ils sont arrivés au résultat suivant:

La condition nécessaire et suffisante pour que la série de Fou-
i ici d une fonction intégrable / (x) soit sommable par une moyenne

1 Cramer. — a Kogbetliantz. 3 W. H. Young 15. — 4 Hardy and Littlewood 3.
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de Gesàro en un point xestqu'il existe un entier tel que si
l'on pose

î(') /"(*+<) + f{X — t) — if(x)
'.y t - • ..."

?j(') jf,Tî(<)
0 0

on ait
lira yk(t) 0 » :

*-0

Ils ont montré en particulier que si est bornée dans un intervalle

contenant le point #, la série de Fourier est ou bien som-
mable au point xpour toute moyenne de Cesàro d'ordre <î>0 ou
bien n'est sommable par aucune. La condition nécessaire et
suffisante de sommabilité est dans ce cas : lim ^ (£) OV

0

§ 5. Les séries de Fourier restreintes.

1. En général la série obtenue par dérivation terme à terme
d'une série de Fourier diverge partout. Mais M. Fejér2 a

déjà établi que l'on peut encore, à l'aide des moyennes
arithmétiques, remonter de la série dérivée à la dérivée de la génératrice.

M. W. H. Young3 a montré que la série dérivée terme à

terme de la série de Fourier d'une fonction à variation bornée

converge presque partout (G, $),d>0, vers la dérivée de la fonction.

Plus généralèment, il a établi que 4:

a) la convergence (G, 1) de la première dérivée (formelle) d'une
série de Fourier (c'est-à-dire la* série obtenue par dérivation »

terme à terme) en un point est une propriété locale;
b) qu'il en est de même de la convergence (G, p)de la -ième

dérivée.

Il résulte de ces propositions que si, par exemple, est

continue et à variation bornée dans le voisinage d'un point, la
p-ième dérivée de la série de Fourier de converge (G, p) vers

—^ au point considéré.
dxp ' / r '

•
•

'

'• •

i Hardy and Llttlewood 3; M. Riesz 7. — 2 Fejér 1. — 8 W, H. Young 20,
4 W. H. Young 31. v •
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