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dans leur démonstration par M. Fatou1. Si la série

converge absolument au point x0,la convergence ou la divergence
de la série au point £0-£, symétrique du point arbitraire
relativement à x0,est de même nature qu'au point #0+|. De

là résulte que l'ensemble des points de convergence absolue est

symétrique par rapport à chacun de ses points* S'il n'a qu'un
nombre fini de points et si on les représente (mod. 2rr) sur le

cercle de rayon 1, ils seront disposés suivant les sommets d'un
polygone régulier. S'il y a une infinité de points de convergence
absolue, leur ensemble est ou de mesure nulle ou de mesure 2n.

Dans ce dernier cas, 2(| an| + j bn|)converge et la série trigono-
métrique converge absolument partout. Donc, si 2(| a,; | + | |)

diverge, l'ensemble des points de convergence absolue est de

mesure nulle. Plus généralement, si une série trigonométrique a

une infinité de points de convergence absolue, l'ensemble des

points de l'intervalle (0, 2n) ayant une propriété de convergence ou
de divergence déterminée est de mesure nulle ou de mesure 2tt.

5. Lorsque les suites art, bntendent vers zéro et sont telles

que l'une des séries de différences 2A*[(—1 )nan] ou
lùakbn, 2A*[(— i)"bn]est absolument convergente, on sait
que les séries 2afloosnx1 2busiïinx convergent uniformément
dans tout intervalle ne contenant aucune valeur congrue à

(p entier)2. En général, cette convergence n'est pas uni-

l'orme dans l'intervalle ^ai> exemP^e>

bn A bn+\, la condition nbtl 0 est nécessaire et suffisante pour
que la série 2 bn sin nx converge uniformément dans tout intervalle

3.

3. La convergence des séries de Fourier.

1. Aux critères connus de convergence des séries de Fourier
dus à Lejeune-Dirichlet, Jordan, Lipschitz, Dini et Le-
besgue 4, M. de la Vallée-Poussin a ajouté le suivant5:

1 Fatou 3. — 2 Lebesgue 5, p. 44. Voir aussi W. H. Young 18. — 3 J. W. Chaundy
and A. E. Jolliffe. —• * Pour ces critères voir Lebesgue 5, p. 64-73. — 5 ce. J. de la
Vallée Poussin 3.
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Si la fonction f(x)esttelle que

n "

p(u) Y^f[l(x + u) + f(x~u)]du
0

est à variation bornée quand u-+0, la série de Fourier de

converge vers F( + 0) au point
Ce critère contient celui de Jordan comme cas particulier.
M. W. H. Young1 a donné un autre critère qui n'est pas-

contenu dans celui de M. de la Vallée-Poussin:
Si f(x)estsimplement discontinue au point x — c'est-à-dire

si f(x4-0) et f(x — 0) existent — et si dans le voisinage de
ce point, on a

j[f(x + h) + f(x — h)] =z
0

g(t) étant une fonction bornée ou plus généralement telle que
1

h

r~f\g(t)\dt soit bornée pour h-*0,la série de Fourier de
h

0

l
converge au point xvers ^[/(# + 0) + — 0)].

Dans un autre travail, M. W. H. Young 2 fait voir que dans
l'énoncé précédent, la condition relative à peut être
remplacée par celle que, pour une valeur ?>0,

h
' i f \d[hUf(x+ k) + — A))] |

«

soit bornée pour
M.G. H. Hardy 3 a étudié et comparé entre eux les différents

critères connus de convergence des séries de Fourier.
2. Riemann a déjà démontré que les coefficients d'une série

de Fourier (d'une fonction bornée intégrable au sens de

Riemann) tendent vers zéro et Leöesgue a montré que la propriété
subsiste lorsque la fonction, bornée ou non, n'est pas intégrable

1 W. H. Young 21% — 2 H. Young 24. On pourra consulter aussi W H. Young
26, 27. — 8 Hardy 2. \
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au sens de Riemann mais est intégrable à son sens. Pour toute
fonction f(x) intégrable au sens de Lebesgue on a donc

lim a z=z lim b 0 1.

n-* oo n-*oo
Cette propriété ne subsiste plus nécessairement si f(x) est non
bornée, intégrable au sens de Riemann ou de Harnack-Young
ou de Denjoy, sans l'être au sens de Lebesgue. Si l'on remarque
que la condition an-+0, bn -* 0 est une condition nécessaire de

convergence de la série de Fourier et qu'il existe des fonctions
intégrables au sens de Lebesgue, mais non au sens de Riemannr
et dont la série de Fourier converge partout vers la fonction 2y

on se rend compte de l'importance qu'il y a à mettre la notion
d'intégrale de Lebesgue à la base de la théorie des séries de
Fourier.

3. Une propriété importante des séries de Fourier, déjà
remarquée par Riemann pour la classe des fonctions bornées
intégrables à son sens et étendue ensuite par M. Lebesgue,
réside dans le fait que la convergence ou la divergence de la
série de Fourier en un point x ne dépend que des valeurs de la
génératrice dans l'intervalle arbitrairement petit {x-s, rr + e)3.
Nous exprimerons ce fait en disant que la convergence d'une
série de Fourier en un point est une propriété locale de sa génératrice.

Du Bois-Reymond a établi le premier qu'il existe des fonctions
continues dont la série de Fourier diverge4. M. Fejér en a donné
plusieurs exemples simples5. En voici un6:

La fonction périodique, de période 2rr, définie dans 0<#<7r
par ~

1

et dans (—7rj 0) par la condition de parité

/"(— x) ~ f(x) — - ^ .x- <: o

Hf'ymondS^Ue b'/p' ^oT 2 Lebcsgue 5, p. 68. — 3 Lebesgue 5, p. 60. — 4 Du Bois-ntymond. — s pejer 3, 4, 5. — 6 Fejér 4.
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est partout continue. Si on la développe en série de Fourier
(de cosinus, puisqu'elle est paire), la série de Fourier de cosinus

diverge au point de continuité x 0.
Nous dirons qu'une fonction présente la singularité de Du

Bois-Reymond en un point, lorsqu'elle est continue en ce point
et que pourtant sa série de Fourier y diverge.

L'existence de fonctions possédant la singularité de Du Bois-
Reymond est liée étroitement à l'ordre de grandeur des
constantes de Lebesgue

Pn
1 fiI sin (2 l)tu sin

dt (6)

Soit JR l'ensemble des fonctions périodiques, de période
intégrables et bornées, telles que | f(x) J <[1. Soit la rc-ième

somme partielle de la série de Fourier de f(x)

n 7r

*
1 Csin(2 -j- 1) _

'n(*> =2Av sin, fi* +2Vdt
V— o 0

On a donc

K(*).l ^
1 fiI sin (2 -f- 1)

sin t
dt Pu -

En prenant
sin (2/i 4- I

f{x + 21) sgn sin t

on voit que £„(#) pa. paest donc le maximum de | $„(#) | au
point Xj dans le champ fonctionnel JR. L'existence de fonctions
continues dont la série de Fourier diverge tient essentiellement,
comme l'a montré M. Lebesgue 1 au fait que lim oo ; c'est,

QO
1

d'ailleurs, une conséquence de théorèmes généraux sur les

intégrales singulières que MM. Lebesgue2, Haar3 et Hahn4 ont
étudiées d'une manière approfondie. est une fonction croissante

de net sgn (à vpn)(— l)v""l(v 1, 2, 3, ...)5.
La valeur asymptotique de pnaété étudiée par plusieurs

i Lebesgue 5, p. 86-87. — 2 Lebesgue 6, 3 Haar 1. — * Halm 1. — « Szegö.
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auteurs x. On a

71 111,00 + V + T + -f
21 VTU 1 16 Oj 1 3 5 2v(2w -J- 1) — 1

Vtg2n + 1 + 2n + 1 — 1?4v2 — 1 ' '
V =1 V=1

k

log (2n -f- 1) -f- a0 + ~7>4 "4" ^U-J-1 ' f •••)r8l«T,T,T^|& + irX..H1
Les oLysontdes constantes et le reste RA+1 de la formule

asymptotique est tel que FU+i7i2yt+2 reste borné lorsque •+ co.
4. M. Lebesgûe a attiré l'attention sur une autre particularité:

la série de Fourier d'une fonction partout continue peut être

toujours convergente et pourtant ne pas converger uniformément

dans (0,2 tt) 2. M. Steinhaus a donné un exemple dans lequel
la convergence n'est uniforme dans aucun intervalle3. On dit
qu'une fonction continue dont la série de Fourier est partout
convergente, présente en un point la singularité de .Lebesgûe
lorsque sa série de Fourier ne converge pas uniformément dans
le voisinage de ce point. M. Neder4 a montré qu'étant donné

un nombre m(0< m 2 tt), il existe une fonction continue dont
la série de Fourier converge partout et pour laquelle cependant
l'ensemble des points de l'intervalle (0,2tt) où le degré de convergence

non uniforme de la série est infini a une mesure > m.
5. Un phénomène intéressant de convergence non uniforme,

qui porte le nom de phénomène de a été particulièrement
étudié5. Il concerne l'allure des sommes partielles sa(x) de la
série de Fourier d'une fonction, à variation bornée au voisinage
d'un point de discontinuité x aetconsiste dans le fait que
$„(#) a dans le voisinage du point a des maxima et minima
relatifs dont les limites pour n-*•oo sont extérieures à l'intervalle

(f(a -f- 0), f (a-— 0)). L'essentiel de ce phénomène peut s'étudier

sur la fonction définie dans (— tt, tt) par
TU

"2 '

f(x)

TU < X 0

0 x — 0

0 X TU

TU

H '

o X — -T- TU

1 Fejér 5, 8; G-ronwall 1, 5; Szegö. — 2 Lebesgûe 4; 5, p. 88. — 3 Steinhaus 3,
4 Neder 1. — 5 Bôcher 1, 2; Carslaw; G-ronwall 3; Jackson.
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et en dehors par périodicité. La série de Fourier de cette fonction
est

sin [2n—2 2 n — l

Il suffit d'étudier les sommes partielles dans l'intervalle
0 < x< 7t.Ona sn (x)>0 pour 0 < x < et le maximum absolu

7Z *

de sn (x) dans 0 < x<tt est atteint au point M„ croit

avec net
TV

lim M„ — dx =1,85 >£ (8)
71-* oo d X

6. Fejér 2 a montré comment on peut, à l'aide de la série de

Fourier, ou plus exactement, des constantes de Fourier d'une
fonction f(x)àvariation bornée, déterminer le -f- 0)
— f(x — 0). Il suffit de déterminer une des racines positives g de

l'équation

f^-dl 0 (9)
d t

t

pour conclure que

iim sfx±f(x±0)
n-* oo \ n J

d'où

f{x+ 0) — f(x— 0) ^ ^ • (10)

Il a montré encore que

n
''

Hm k\bk cos kx — aksin kx)— f(x + 0) — f(x — 0) (11)

*== 1

Lukacs 3 a trouvé une autre expression du saut; il a montre
que

n -

— \f\x+ 0) — f[x— 0)] lim z——^5 cos — sin (12)
% n~>00 &

'•*

sous la seule hypothèse que le premier membre existe.

i Ç^rsiaw. — 2 Fejér 10 ; Sidoii. — 3 Lukacs.
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7. Si | f (x)(p> 1) est intégrable dans (0, 2jr), f \ s„ (x)
0

reste bornée pour n oo et

2îC

f \f — »„ I p dx —>- 0 1. (13)

Dans le cas particulier où p2, Hardy et Littlewood ont
montré 2 que

lim
K + (*. - *|2 + - + <«>,

o m,
/»-oo n + 1

en tout point où 5 =^[f(x + 0) +f(x — 0)] existe. Si dans (14)

on prend ^ f(x),la formule est vraie presque partout.
8. Riemann a déjà donné des conditions suffisantes pour que

la série de Fourier d'un produit f(x) 1 {x) converge en même temps

que la série de Fourier de f(x). Ces conditions ont été élargies

par M. Lebesgue 3 puis par M. Steinhaus qui montre que la série

de Fourier de flconvergeau point x de convergence de la série

de Fourier de fsi / est bornée et si est telle que
* + *

j—
soit intégrable par rapport à t dans tout intervalle 4.

9. M. Lusin'5 a indiqué une condition nécessaire et suffisante

pour que la série de Fourier d'une fonction de carré intégrable
converge presque partout. Mais cette condition n'est pas simple
et nous ignorons si la série de Fourier d'une fonction continue
ou d'une fonction de carré intégrable a nécessairement des points
de convergence et si leur ensemble est de mesure positive. On
sait que la série de Fourier d'une fonction partout continue
peut avoir une infinité partout dense de points de divergence
et que l'ensemble des points de divergence peut avoir la
puissance du continu 6. M. Kolmogoroff 7 a construit une fonction

1 M. Riesz 8. Dans le cas p 1 on ne peut pas affirmer que
271

f I f sn\dx0

Voir à ce sujet S. Banach et H. Steinhaus 1et Hahn 1. — 2 Hardy et Littlewood 2. —
3 Lebesgue 5, p. 117-119. — 4 Steinhaus 2. — 6 Lusin 4. — 6 Neder 1. Le raisonnement

de Du Bois-Reymond 1 pour établir l'existence d'un ensemble partout dense de
points de divergence n'est pas concluant. Voir à. ce propos Neder 5. — 7 Kolmogo-
ro it 1.
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mtëgvobAQ, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si est de carré
intégrable, les suites partielles sn (x) de la série de Fourier

convergent presque partout vers f(x) lorsque oo si

• Vhi >A.>in

k étant une constante1.
Après que MM. Fatou2, Jerosch et Weyl3, Weyl4 eurent

démontré certains résultats moins généraux, M. W. H. Young5

établit que si .2Anestune série de Fourier, — (e > 0) est une
nB

série de Fourier convergeant presque partout. M. Hardy6 a
réussi à faire voir que dans ce résultat peut être remplacé par
log n.Dans le cas spécial des fonctions de carré intégrable,.
MM. Kolmogoroff et Seliverstoff 7 ont montré que la
convergence de 2 (a* + &*) logn)l+ ^(d > 0) entraîne la convergence
« presque partout » de la série de Fourier et M. Menchoff 8

a montré que le même résultat a lieu si 2(| + | bn |2""s)>

(e > 0), converge.
10. On ne sait pas grand chose sur les propriétés que doit

avoir f(x) pour que sa série de Fourier soit absolument convergente.

M. S. Bernstein9 a cependant démontré que si f(x).est
à variation bornée et satisfait uniformément dans tout l'intervalle

1

(0,27i) à une condition de Lipschitz d'ordre a < y, sa série de

Fourier est absolument convergente; si a > il y a des fonctions

dont la série de Fourier n'est pas absolument convergente.

§ 4. La sommation des séries de Fourier par les moyennes
de Gesàro.

1. On peut toujours remonter d'une série de Fourier — c'est-
à-dire de la suite des constantes de Fourier — à la génératrice

i Kolmogoroff 2. — 2 Fatou 1. — 8 Jerosch et Weyl. — 4 Weyl. — ß W. H. Young
11. — 6 Hardy 1. — A. Kolmogoroff et Gr.Seliverstoff.— 8 Menchoff 3. — • S. Bernstein.
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