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SERIES TRIGONOMETRIQUES 23

dans leur démonstration par M. Farou . Si la série £ A, con-
verge absolument au point z,, la convergence ou la divergence
de la série au point z,—, symétrique du point arbitraire ;&
relativement a x,, est de méme nature qu’au point z,4£. De
14 résulte que 'ensemble des points de convergence absolue est
symétrique par rapport & chacun de ses points. 5’1l n’a qu’un
nombre fini de points et si on les représente (mod. 2z) sur le
cercle de rayon 1, ils seront disposés suivant les sommets d’un
polygone régulier. S’il y a une infinité de points de convergence
absolue, leur ensemble est ou de mesure nulle ou de mesure 27.
Dans ce dernier cas, 3(l a. |+ | b.|) converge et la série trigono-
métrique converge absolument partout. Done, si 3(| a; 0 ])
diverge, Iensemble des points de convergence absolue est de
mesure nulle. Plus généralement, si une série trigonométrique a
une infinité de points de convergence absolue, I’ensemble -des
points de I'intervalle (0, 2r) ayant une propriété de convergence ou
de divergence déterminée est de mesure nulle ou de mesure 2x.

5. Lorsque les suites a,, b, tendent vers zéro et sont telles
que P'une des séries de différences XA*a,, ZAf[(— 1)"a,] ou
SAYb,, EAF[(— 1)"b,] est absolument convergente, on sait
que les séries Za,cosnx, 2b,sin nx convergent uniformément

dans tout intervalle ne contenant aucune valeur congrue &
207 ., .
v/—~ (p entier) 2. En général, cette convergence n’est pas uni-
2k

forme dans D'intervalle ( ’;T g 2[”: +e>. Si, par exemple,

h, > b4, la condition nb, - 0 est nécessaire et suffisante pour
que la série Sb, sin nx converge uniformément dans tout inter-
valle 3

LA CONVERGENCE DES SERIES DE FOURIER.

. Aux critéres connus de convergence des séries de Fourier
dus & LesjeuNe-DiricuLET, JORDAN, LipscHITZ, DINI et LE-
BEsGUE 4, M. de la VarLLEe-Poussin a ajouté le suivant 3:

! Fatou 3. — 2 Lebesgue 5, p. 44. Voir aussi W. H. Young 18. — 3 J. W. Chaundy

and A, E. Jolliffe. — 4 Pour ces critéres voir Lebesgue 5, p. 64-73. — 5 Ch. J. de la
Vallée Poussin 3.
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. Si la fonction f(z) est telle que: |

i

F(u')‘z ;—uf[/(x + u) + flx - u)]du

0

est a Varlatlon bornée quand u~ 0, la série de Fourier de f(x)
converge vers F(+4 0) au point z.

Ce critere contient celui de Jordan commie cas particulier.

M. W. H. Younc ! a donné un autre critére qui n’est pas
~ contenu dans celui de M. de la Vallée-Poussin: |

Si f(z) est simplement discontinue au point 2 — c’est-a-dire
si f(x +0) et f(x—0) ex1stent — et .81 dans le voisinage de
ce point, on a |

h .
[f(.L—i—h -|—/x——h)]—'%l-f (t)ydt ,
v 0

g(' )‘ étant une fonction bornée ou plus generalement telle que

. fl g(t)| dt soit bornée pour k-~ 0, la série de Fourier de f(z)

converge au poin‘t X vers %[f(x +0) + f(x—0)1.

Dans un autre travail, M. W. H. Youna 2 fait voir que dans
I’énoncé précédent, la condition relative & g(¢) peut étre rem-
placée par celle que, pour une valeur ¢>0,

h
- J 12t + )+ fle = A
soit bornée pour k- 0.

M. G. H. HARrDY 2 a étudié et compare entre eux les différents
critéres connus de convergence des séries de Fourier. |
2. RIEMANN a déja démontré que les coefficients d’une série
de Fourier (d’une fonction bornée intégrable au sens de Rie--
mann) tendent vers zéro et LEBESGUE a-montré que la propriété "
~ subsiste lorsque la fonction, 'b‘ornée‘ou non, n’est pas intégrable

1 W H. Young 21, — 2 W. H. Young 24 On pourra conqulter auss1 W. H. Young o ;
26, ‘27-—-—3Hardy2 _ , o
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au sens de Riemann mais est intégrable a son sens. Pour toute
fonction f(z) intégrable au sens de Lebesgue on a donc

lim a, = lim bn = 0 L
n=p © n=» ©

Cette propriété ne subsiste plus nécessairement si f(x) est non
bornée, intégrable au sens de Riemann ou de Harnack-Young
ou de Denjoy, sans 1’étre au sens de Lebesgue. S1 'on remarque
que la condition @, ~» 0, b, > 0 est une condition nécessaire de
convergence de la série de Fourier et qu’il existe des fonctions
intégrables au sens de Lebesgue, mais non au sens de Riemann,
et dont la série de Fourier converge partout vers la fonction 2
on se rend compte de 'importance qu’il y a & mettre la notion
d’intégrale de Lebesgue a la base de la théorie des séries de
Fourier.

3. Une propriété importante des séries de Fourier, déja re-
marquée par RiEmMaNN pour la classe des fonctions bornées
intégrables & son sens et étendue ensuite par M. LEBESGUE,
réside dans le fait que la convergence ou la divergence de la
série de Fourier en un point 2 ne dépend que des valeurs de la
génératrice dans 'intervalle arbitrairement petit (x—e¢, x4 ¢)3.
Nous exprimerons ce fait en disant que la convergence d’une
série de Fourier en un point est une propriéié locale de sa généra-
trice.

Du Bors-REymonp a établi le premier qu’il existe des fonctions
continues dont la série de Fourier diverge4. M. FEj£R en a donné
plusieurs exemples simples . En voici un ©:

La fonction périodique, de période 27, définie dans 0<z<nx

par
o . ) 3
G RQ sin (2% )
[(x) = Z T

1

et dans (—z, 0) par la condition de parité

N
2
i
=
=2
l
S|
A
&
A
o

t Lebesgue 5, p. 61. — 2 Lebesgue 5 i
7 , D. 61. , P. 68. — 3 Lebesgue 5, p. 60. — 4 -
Reymond. — 5 Fejér 3, 4, 5. — 6 Fejér 4. gue o - 60 b Bois
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est partout continue. Si on la développe en série de Fourier
(de cosinus, puisqu’elle est paire), la série de Fourier de cosinus
diverge au point de continuité x = 0. ' |

Nous dirons qu’une fonction présente la smgularlte de Du
Bois-Reymond en un point, lorsqu’elle est continue en ce pomt
et que pourtant sa série de Fourier y diverge.

L’existence de fonctions possédant la singularité de Du Bois-
Reymond est liée étroitement & ’ordre de grandeur des cons-
tantes de Lebesgue |

1

—

i
0

™
sin (2n 4 1)t
sin ¢

'dt , . (6)

Soit N Iensemble des fonctions périodiques, de période 2r
intégrables et bornées, telles que | f(z) | <1. Soit s, () la n-iéme
somme partielle de la série de Fourier de f(x)

n

_ ‘
1 sin (2n +
= SAV__;E/ R Vfa 4 20 de .

y=0
On a donc
P |
1 sin (2n 4+ 1)¢ _
" :'—7:'-/ sin ¢ ldt—_p"‘
0
En prenant
' sin (2n 4 1)1

[(x 4 2t) = sgn. e
on voit ‘que $,(z) = pa. p. est donc le maximum de |s,(x)| au
point z, dans le champ fonctionnel J1T. L’existence de fonctions
continues dont la série de Fourier diverge tient essentiellement,
comme ’a montré M. LEBESGUE au falt que lim p, =0 ; c’est

n= ®

dallleurs, une conséquence de théorémes généraux sur les
intégrales singuliéres que MM. LEBESGUE2, HaAr3 et HAuN ont
étudiées d’une maniére approfondie. p, est une’fonction crois-
sante de n et sgn(A’p,) = (—1)""'(v=1,2, 3,...)5

La valeur asymptothue de p, a été etudlee par pluswurs

1 Lebesgue 5, p. 86-87. — 2 Lebesgue 6, — 8 Haar 4, — ¢ Hahn 1. — ‘5'Sze.g6'. i
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auteurs . On a

» T R :
AN L, vF 1T 16~Qt "3 5 T T T ayEn 4 1 — 1
~‘~‘"T~.’27 g2n+'l+2n+’l—7r22 hy? — 1
v=1 v=1
k .
4l (2 E 4+ R ( 0,1, 2 )
= —log (2n iy - (n=0,1 2, ..
x2 0 - Zn—{- k41

Les «, sont des constantes et le reste R, de la formule
asymptotique est tel que Ry n* 1?2 reste borné lorsque n ~» .

4, M. LEBESGUE a attiré’attention sur une autre particularité:
la série de Fourier d’une fonction partout continue peut étre
toujours convergente et pourtant ne pas converger uniformé-
ment dans (0,2x) 2 M. STEINHAUS & donné un exemple dans lequel
la convergence n’est uniforme dans aucun intervalle®. On dit
qu’une fonetion continue dont la série de Fourier est partout
convergente, présente en un point la singularité de Lebesgue
lorsque sa série de Fourier ne converge pas uniformément dans
le voisinage de ce point. M. NEDER * a montré qu’étant donné
un nombre m (0 < m < 2x), il existe une fonction continue dont
la série de Fourier converge partout et pour laquelle cependant
I’ensemble des points de 'intervalle (0,27) ou le degré de conver-
gence non uniforme de la série est infini a une mesure > m.

5. Un phénomene intéressant de convergence non unﬁorme,
qui porte le nom de phénomene de Gibbs, a été particuliérement
étudié 5. Il concerne l'allure des sommes partielles s,(x) de la
série de Fourier d’une fonction, & variation bornée au voisinage
d’un point de discontinuité x = a, et consiste dans le fait que
sp(z) a dans le voisinage du point a des maxima et minima
relatifs dont les limites pour n- o sont extérieures a linter-
valle (f (a + 0), f (a—0)). L’essentiel de ce phénomeéne peut s’étu-
dier sur la fonction définie dans (— «, =) par

I
— 35 —rn<x <0
) 0 x =0
-
—é. ’ 0 < x < T
S =+
L Fejér 5, 8; Gronwall 1, 5; Szegd. — 2 Lebesgue 4; 5, p. 88. — 3 Steinhaus 3.

— 4 Neder 1. — 5 Bécher 1, 2; Carslaw; Gronwall 3; Tackson
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et en dehors par périodicité..La série de Fourier de cette fonction

est
sml’n — 1yx
2 .
2 2n — 1 -

I1 suffit d’étudier les 'sommes partielles s, (x) dans I’intefvalle
0<z<n On as,(z) >0 pour 0 <z < x et le maximum absolu

‘M, de s,(z) dans 0 < z < & est atteint au point z = —27—;; M, croit
avec n et | |

. . 1l
limM, = = 1,85 ... >§ . (8)

n=» ©

0

6. FEJER 2 a montré comment on peut, & ’aide de la série de
Fourier, ou plus exactement, des constantes de Fourier d’une
fonction f(x) & variation bornée, déterminer le saut f(zx + 0)
— f(x—0). 11 suffit de déterminer une des racines positives g de
Péquation | | |

[Plar=0 (9)

pour conclure que

Jlim sn(wi%> = f(x '_*:0) -

n- o

flx 4+ 0) — f(x — 0) = lim [sn (x —+ %) — sn<x — in)] . (10)

Il a montré encore que

d’out

Nn=> ®©

lim —2/. b, cos kx — a, sin kx) = f(x 4 0) — f(x — 0) . (11)
k=1 | . : '

LukAcs 3 a trouvé une autre expression du saut; il a montré |
que |

%mp+m—ﬂx—m1=hm

n*plog

2 (by cosvx — a,sinvx) (12)

sous la seule hypothése que le premi'er membre existe.

-1 Carslaw. — 2 Fejér 10; Sidon. — 3 Lukaes. .




SERIES TRIGONOMETRIQUES 29

2w

7. S| f(x )P (p > 1) est intégrable dans (0, 2r), f‘g,, ) |7 dx
0
reste bornée pour n - et

[Af s, de—=00 (13)

Dansg le cas particulier ou p =2, Harpy et LirrLEwoop ont
montré 2 que
(sp — 8)2 4+ (s, — 12+ ... + (5, — )

Iim — =0 (14)
N @ n+1

en tout point ou s :%[f(x 4+ 0) + f(z—0)] existe. Si dans (14)

on prend s = f(z), la formule est vraie presque partout.

8. RiemaNN a déja donné des conditions suffisantes pour que
la série de Fourier d’un produit f(x) A (x) converge en méme temps
que la série de Fourier de f(x). Ces conditions ont été élargies
par M. LEBESGUE 3 puis par M. STEINHAUS qui montre que la série
de Fourier de fA converge au point z de convergence de la série

' . ) . INE — A
de Fourier de f si f est bornée et si A(zx) est telle que (> + tl ]

soit intégrable par rapport & ¢ dans tout intervalle 4

9. M. Lusin® a indiqué une condition nécessaire et suffisante
pour que la série de Fourier d’une fonction de carré intégrable
converge presque partout. Mais cette condition n’est pas simple
et nous ignorons si la série de Fourier d’une fonction continue
ou d’une fonction de carré intégrable a nécessairement des points
de convergence et si leur ensemble est de mesure positive. On
sait que la série de Fourier d’une fonction partout continue
peut avoir une infinité partout dense de points de divergence
et que 'ensemble des points de divergence peut avoir la puis-
sance du continu . M. KoLMoGOROFF 7 a construit une fonction

1 M. Riesz 8. Dans le cas p = 1 on ne peut pas affirmer que
a7

f |f—s,ldx 0.

0

}’oir 4 ce sujet S.Banach et H. Steinhaus 1 et Hahn 1. — 2 Hardy et Littlewood 2. —
3 Lebesgue 5, p. 117-119. — 4 Steinhaus 2. — 5 Lusin 4. — 6 Neder 1. Le raisonne-
ment de Du Bms—Reymond 1 pour établir I’existence d’un ensemble partout dense de

points de divergence n’est pas concluant. Voir & ce propos Neder 5. — 7 Kolmogo-
roft 1.




30 | M. PLANCHEREL

intégrable, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si f(x) est de carré
intégrable, les suites partielles Su, (2) de la série de Fourier
convergent presque partout vers f(x) lorsque p - o si

Il
P S k>
P
k étant une constante 1.
Aprés que MM. Fatou?, JERoscH et WEYL 3, WEYL ¢ eurent
démontré certains résultats moins généraux, M. W. H. Young®

établit que si 2 A, est une série de Fourier, 2— (¢ > 0) est une
n

série de Fourier convergeant presque partout. M. HArpY?® a
réussi & faire voir que dans ce résultat n¢ peut étre remplacé par’
log n. Dans le cas spécial des fonctions de carré intégrable,
MM. KoLMOGOROFF. et SELIVERSTOFF 7 ont montré que la con-
vergence de 3 (a) + b?) (log n)!*+3(3 > 0) entraine la convergence
« presque partout » de la série de Fourier 3 A, et M. MENcHOFF 8
a montré que le méme résultat a lieu si 3 (| a,,‘lz*e + | bn [*7F),
(e > 0), converge. |

10. On ne sait pas grand chose sur les propriétés que doit
avoir f(x) pour que sa série de Fourier soit absolument conver-
gente. M. S. BERNSTEIN ® a cependant démontré que si f(z) est
a variation bornée et satisfait uniformément dans tout I'intervalle -

(0,27) & une condition de Lipschitz d’ordre « < %, sa série de

Fourier est absolument convergente; si « > +, il y a des fonctions
dont la série de Fourier n’est pas absolument convergente.

§ 4 LA SOMMATION DES SERIES DE FOURIER PAR LES MOYENNES
DE GESsARro. ‘

1. On peut toujours remonter d’une série de Founer — c’est-
a-dire de la suite des constantes de Foumer — & la génératrice

3

1 Kolmogoroﬂ.’ 2. — 2 Fatou 1.—87J erosch et Weyl — 4 Weyl. —5 'W. H. YOung: :
- 41, —9 Hardy i, —7% A Kolmogoroﬂ’ et G Seliverstoﬁ' — 8 Menchoﬂ’ 3 - 98, Bern-

. stein, -
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