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20 M. PLANC HE

Ainsi délimité mon sujet est encore très étendu et je devrai
me borner aux points essentiels. Les progrès les plus importants
de la théorie des séries trigonométriques sont dus au développement

considérable de la théorie des fonctions de variables réelles ;

je chercherai à vous montrer qu'ils sont dus plus particulièrement

à l'introduction de l'intégrale de Lebesgue et des méthodes
de la théorie des séries divergentes, à l'étude des propriétés de

la suite des constantes de Fourier et à celle de certaines classes

de séries trigonométriques qui, sans être des séries de Fourier,
s'en rapprochent par leurs propriétés essentielles.

§ 1. Définitions.

1. Nous appellerons série trigonométrique toute série de la
forme
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Nous nous bornerons, en général, à supposer que les coefficients

an, bnde la série sont réels ainsi que la variable en vertu de la
périodicité de cos nx, sin nx, nous pourrons nous borner à faire
varier x dans un intervalle de longueur In.

2. Une classe particulière de séries trigonométriques, spécialement

importante, est celle des séries de Fourier. désignant
une fonction réelle, périodique de période 2ît, intégrable au sens
de Lebesgue dans l'intervalle d'une période, formons les
constantes 1
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Ce sont les constantes de Fourier ou les coefficients de Fourier
de f(x).La série trigonométrique correspondante est appelée —

i La notion de série de Fourier dépend donc de la notion d'intégrale. Dans tout ce
qui suit, nous nous servirons de la notion d'intégrale due «à Lebesgue. Si l'on emploie
une notion d'intégrale plus étendue, par exemple celle de Harnaok-Young ou celle de
Denjoy, on peut former les constantes (2) pour des fonctions qui n'ont pas de série
de Fourier. La série trigonométrique correspondante est dite quelquefois une série de
Fourier généralisée. Nous laisserons de côté ces séries. "
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qu'elle converge ou non — la sérde Fourier de f(x). f(x) est

la génératrice de cette série et nous exprimons la dépendance

de f(x)et de la suite de ses constantes de Fourier par le symbole

d'équivalence 1
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L'introduction de ce symbole est légitimée par le fait que deux
fonctions /(#), g(x) qui ont même suite de constantes de Fourier,
donc même série de Fourier, sont telles que
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ffdx fgdx (4)

0 0

et réciproquement. On a donc f(x) g(x) presque partout,
c'est-à-dire sauf éventuellement aux points d'un ensemble de

mesure nulle 2. En général il n'est pas permis de remplacer le

symbole d'équivalence par le symbole d'égalité, le second
membre de (3) pouvant diverger ou pouvant converger vers une
valeur différente de f(x). Notons, par contre, que les équivalences
peuvent s'additioner entre elles ou se multiplier par des
constantes comme des égalités et que l'intégration terme à terme
de l'équivalence (3) conduit à une égalité
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dans laquelle la série second membre est uniformément convergente

3. Nous rencontrerons au § 7 quelques théorèmes sur la
multiplication des équivalences.

§ 2. Convergence des séries trigonométriques
GÉNÉRALES.

L G. Cantor 4 a montré que la série trigonométrique (1) ne
peut converger pour toute valeur de x que si an -»>0, ba-+ 0 lors-

1 Ilurwitz, 2. — 2 Lebesgue 5, p. 91. — 3 Lebesgue 5, p. 102. — * G. Cantor 1.
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