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LE DEVELOPPEMENT
DE LA THEORIE DES SERIES TRIGONOMETRIQUES
DANS LE DERNIER QUART DE SIECLE'!

PAR

M. Michel PLANCHEREL (Zurich).

Les « Legons sur la théorie des séries trigonométriques» de
M. H. LeBesGUE 2 et les chapitres consacrés par M. E. W.
Hosson 3 & cette théorie dans sa « Theory of functions of a real
cartable and the theory of Fourier series », ainsi que les articles
de Fr. Burckuarpnr? dans I'Encyclopddie der math. Wiss. (11
A 12), fixent D’état de nos connaissances sur les séries trigono-
métriques au début du XXe siécle. Depuis lors, I'intérét des
mathématiciens pour ces séries n’a pas diminué et les progres
realisés me paraissent assez importants pour que j’essaie de
vous présenter un tableau de I’état actuel de nos connaissances
sur ce sujet?,

Pour abréger mon exposé, je laisserai de c6té la théorie des
formules intégrales de Fourier, celle des séries trigonométriques
de plusieurs variables, celle des séries trigonométriques non
harmoniques ainsi que les recherches sur la meilleure approxi-
mation des fonctions d’une variable réelle ou complexe par des
polynomes trigonométriques. Ces derniéres recherches ont été
cxposées & notre Société par M. de la VALLEE-Poussin en 1918
et Je ne puis mieux faire que vous renvoyer a sa conférence 6 et
@ son livre: Sur Papproximation des fonctions d’une ¢ariable
reelle ou complexe par des suites finies de polynomes 7.

| ()lnliapp]m;tggzésenté 4 la réunion de la Société mathématique suisse, tenue a Lugano,
e 22 avri . '

) 2 H. Lebesgue, 5. (La bibliographie se trouve rassemblée A la fin du rapport). —
* Hobson, 1. — 4 Fr. Burckhardt. — 5 Sur le méme sujet vient de paraitre (sep-
tvmb're 1924) dans I'Encyklopaedie der math. Wiss. (II C 10) un article de E. Hilb et
M, ltlf'sz: Neuere Unlersuchungen iiber trigonomelrische Reihen. — 6 Ch. J. de la Vallée-
Poussin, 6. — 7 Ch. J. de l1a Vallée-Poussin, 7.
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Ainsi délimité mon sujet est encore trés étendu et je devrai
me borner aux points essentiels. Les progres les plus importants
de la théorie des séries trigonométriques sont dus au développe-
- ment considérable de la théorie des fonctions de variables réelles;
je chercherai & vous montrer qu’ils sont dus plus particuliére-
ment & 'introduction de l'intégrale de Lebesgue et des méthodes
de la théorie des séries divergentes, & I’étude des propriétés de
la suite des constantes de Fourier et a celle de certaines classes
de séries trigonométriques qui, sans étre des séries de Fourier,
's’en rapprochent par leurs propriétés essentielles.

§ 1. DEFINITIONS.

1.- Nous appellerons série trzgonometnque toute série de la
forme '

%0—-!—2((1 cos nx + b, sin nx) EA (1)‘

n=]
?

. Nous nous bornerons, en général, & supposer que les coefficients
@n, b, de la série sont réels ainsi que la variable z; en vertu de la
‘ perlodlclte de cos nz, sin nx, nous pourrons nous borner a faire
varler z dans un intervalle de longueur 2x.

2. Une classe particuliére de séries trlgonometrlques spec1ale-
ment importante, est celle des séries de Fourier. f(x) désignant
une fonction réelle, périodique de période 2x, intégrable au sens
de Lebesgue dans I'intervalle d’une perlode formons les cons-
tantes 1

2 - R 2r ’ '
, a
a, = %ff(x) dx , b" = 1ff(x) 008 nede , n=1,23/... (2
0 n 0 :
Ce sont les constantes de Fourier ou les coefficients de. Fourier
de f(z). La série trig’onométrique correspondante est appelée —

1 La notion de série de Fourier dépend donc de 1a notlon d’mtégrale Dans tout ce
qui suit, nous nous servirons de la notion d’intégrale due A Lebesgue. Si I'on emploie .
une notion d’intégrale plus étendue, par exemple celle de Harnack- Young ou celle de
‘Denjoy, on peut former les constantes (2) pour des fonctions qui n’ont pas de série
de Fourier. La série trigonométrique correspondante est dite quelquefms une Série de
Fourier géneralzsée Nous lalsserons de cOté ‘ces séries. '
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qu'elle converge ou non — la série de Fourier de f(z). f(x) est
la génératrice de cette série et nmous exprimons la dépendance
de f(x) et de la suite de ses constantes de Fourier par le symbole
d’équivalence *

[lx) o %"— -+ 2 (@, cos nx + b, sin nx) . (3)

n=1

L’introduction de ce symbole est légitimée par le fait que deux
fonctions f(x), g(x) qui onit méme suite de constantes de Fourier,
donc méme série de Fourier, sont telles que

X x
‘O/‘fo{x ::‘U/‘gdx (

et réciproquement. On a donc f(x) = g(x) presque partout,
¢'est-a-dire sauf éventuellement aux points d’un ensemble de
mesure nulle 2. En général il n’est pas permis de remplacer le
svmbole d’équivalence par le symbole d’égalité, le second
membre de (3) pouvant diverger ou pouvant converger vers une
valeur différente de f(x). Notons, par contre, que les équivalences
peuvent s’additioner entre elles ou se multiplier par des cons-
tantes comme des égalités et que l'intégration terme a terme
de I'équivalence (3) conduit & une égalité

RN
~—~—

x . x

a Al ) .

lffa’x = ?Ox -+ _Z f(a” cos nx + b, sin nx)dx (5)
0 n=1 20

dans laquelle la série second membre est uniformément conver-

gente 3. Nous rencontrerons au § 7 quelques théorémes sur la
multiplication des équivalences.

§ 2. CONVERGENCE DES SERIES TRIGONOMETRIQUES
GENERALES.

1. G. CaxTor * a montré que la série trigonométrique (1) ne
peat converger pour toute valeur de z que si a, -0, b,~ 0 lors-

! Hurwitz, 2. — 2 Lebesgue 9, p. 91. — 3 Lebesgue 5, p. 102. — 4 G. Cantor 1.
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que n+ . Plus généra]ement cette condition est encore néces- -
saire pour que EA,, converge sur un ensemble de pomts de

mesure positive 1, 1 Mais elle est loin d’étre sufﬁsante. On peut
avec M. STEINHAUS 2, construire une série trigonométrique dont
les coefficients tendent vers zéro et qui, cependant, diverge
partout. Le méme mathématicien a donné une série trigono-
métrique qui converge dans un intervalle et qui diverge dans
un autre intervalle 3. Les phénomenes de convergence et de
divergence les plus divers peuvent donc se présenter et M.
MAZURKIEWICZ 8 méme montré que pour tout procédé « toeplit-
zien »* de sommation des séries trigonométriques, il est possible
de construire une série dont les coefficients tendent vers zéro
et qui cependant n’est pas sommable presque partout, par ce
procédé 5.

2. Nous ne connaissons presque rien sur la structure de l’en-
semble des points de convergence ou de divergence d’une série
trigonométrique. On voit bien que I'ensemble des points de
convergence dans un intervalle de per10d101te ne peut pas étre
entiérement arbitraire, car I’ensemble des ensembles de points
de l'intervalle (0, 2r) a une puissance supérieure a celle de I’en-
semble des suites possibles de constantes a,, b.. Si nous ajoutons
a ce résultat négatif le fait établi par M. NEDER &, qu’étant donné
arbitrairement un nombre m(0<m < 2n), il existe des séries
trigonométriques qui, dans un intervalle de périodicité, divergent
sur un ensemble de mesure m, nous aurons dit tout ce que 1’on
sait de général sur la question.

3. Une série trigonométrique peut converger partout et ne
converger uniformément dans aucun intervalle. On trouvera
dans la thése de M. NEDER 7 une etude approfondle des questions
qui se posent & ce sujet. |

4. Une série trigonométrique, méme partout convergente
‘n’est pas, en général, absolument convergente. MM. Lusix 8,
DENjoY ? et S. BERNSTEIN 1 ont obtenu sur la convergence
absolue quelques résultats intéressants Vretrouvés et - simplifiés

1 Lebesgue 5, p. 110. — 2 Steinhaus 1. — 3 Steinhaus 5. Von' aussi. Lusin 1. —
4 Toeplitz 2. —58 Mazurkiewmz —6 Neder1.—7 Neder 1. — 8 Lusin ¢, — @ Denjoy 1, —
10 S, Bernstem . o
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dans leur démonstration par M. Farou . Si la série £ A, con-
verge absolument au point z,, la convergence ou la divergence
de la série au point z,—, symétrique du point arbitraire ;&
relativement a x,, est de méme nature qu’au point z,4£. De
14 résulte que 'ensemble des points de convergence absolue est
symétrique par rapport & chacun de ses points. 5’1l n’a qu’un
nombre fini de points et si on les représente (mod. 2z) sur le
cercle de rayon 1, ils seront disposés suivant les sommets d’un
polygone régulier. S’il y a une infinité de points de convergence
absolue, leur ensemble est ou de mesure nulle ou de mesure 27.
Dans ce dernier cas, 3(l a. |+ | b.|) converge et la série trigono-
métrique converge absolument partout. Done, si 3(| a; 0 ])
diverge, Iensemble des points de convergence absolue est de
mesure nulle. Plus généralement, si une série trigonométrique a
une infinité de points de convergence absolue, I’ensemble -des
points de I'intervalle (0, 2r) ayant une propriété de convergence ou
de divergence déterminée est de mesure nulle ou de mesure 2x.

5. Lorsque les suites a,, b, tendent vers zéro et sont telles
que P'une des séries de différences XA*a,, ZAf[(— 1)"a,] ou
SAYb,, EAF[(— 1)"b,] est absolument convergente, on sait
que les séries Za,cosnx, 2b,sin nx convergent uniformément

dans tout intervalle ne contenant aucune valeur congrue &
207 ., .
v/—~ (p entier) 2. En général, cette convergence n’est pas uni-
2k

forme dans D'intervalle ( ’;T g 2[”: +e>. Si, par exemple,

h, > b4, la condition nb, - 0 est nécessaire et suffisante pour
que la série Sb, sin nx converge uniformément dans tout inter-
valle 3

LA CONVERGENCE DES SERIES DE FOURIER.

. Aux critéres connus de convergence des séries de Fourier
dus & LesjeuNe-DiricuLET, JORDAN, LipscHITZ, DINI et LE-
BEsGUE 4, M. de la VarLLEe-Poussin a ajouté le suivant 3:

! Fatou 3. — 2 Lebesgue 5, p. 44. Voir aussi W. H. Young 18. — 3 J. W. Chaundy

and A, E. Jolliffe. — 4 Pour ces critéres voir Lebesgue 5, p. 64-73. — 5 Ch. J. de la
Vallée Poussin 3.
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. Si la fonction f(z) est telle que: |

i

F(u')‘z ;—uf[/(x + u) + flx - u)]du

0

est a Varlatlon bornée quand u~ 0, la série de Fourier de f(x)
converge vers F(+4 0) au point z.

Ce critere contient celui de Jordan commie cas particulier.

M. W. H. Younc ! a donné un autre critére qui n’est pas
~ contenu dans celui de M. de la Vallée-Poussin: |

Si f(z) est simplement discontinue au point 2 — c’est-a-dire
si f(x +0) et f(x—0) ex1stent — et .81 dans le voisinage de
ce point, on a |

h .
[f(.L—i—h -|—/x——h)]—'%l-f (t)ydt ,
v 0

g(' )‘ étant une fonction bornée ou plus generalement telle que

. fl g(t)| dt soit bornée pour k-~ 0, la série de Fourier de f(z)

converge au poin‘t X vers %[f(x +0) + f(x—0)1.

Dans un autre travail, M. W. H. Youna 2 fait voir que dans
I’énoncé précédent, la condition relative & g(¢) peut étre rem-
placée par celle que, pour une valeur ¢>0,

h
- J 12t + )+ fle = A
soit bornée pour k- 0.

M. G. H. HARrDY 2 a étudié et compare entre eux les différents
critéres connus de convergence des séries de Fourier. |
2. RIEMANN a déja démontré que les coefficients d’une série
de Fourier (d’une fonction bornée intégrable au sens de Rie--
mann) tendent vers zéro et LEBESGUE a-montré que la propriété "
~ subsiste lorsque la fonction, 'b‘ornée‘ou non, n’est pas intégrable

1 W H. Young 21, — 2 W. H. Young 24 On pourra conqulter auss1 W. H. Young o ;
26, ‘27-—-—3Hardy2 _ , o
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au sens de Riemann mais est intégrable a son sens. Pour toute
fonction f(z) intégrable au sens de Lebesgue on a donc

lim a, = lim bn = 0 L
n=p © n=» ©

Cette propriété ne subsiste plus nécessairement si f(x) est non
bornée, intégrable au sens de Riemann ou de Harnack-Young
ou de Denjoy, sans 1’étre au sens de Lebesgue. S1 'on remarque
que la condition @, ~» 0, b, > 0 est une condition nécessaire de
convergence de la série de Fourier et qu’il existe des fonctions
intégrables au sens de Lebesgue, mais non au sens de Riemann,
et dont la série de Fourier converge partout vers la fonction 2
on se rend compte de 'importance qu’il y a & mettre la notion
d’intégrale de Lebesgue a la base de la théorie des séries de
Fourier.

3. Une propriété importante des séries de Fourier, déja re-
marquée par RiEmMaNN pour la classe des fonctions bornées
intégrables & son sens et étendue ensuite par M. LEBESGUE,
réside dans le fait que la convergence ou la divergence de la
série de Fourier en un point 2 ne dépend que des valeurs de la
génératrice dans 'intervalle arbitrairement petit (x—e¢, x4 ¢)3.
Nous exprimerons ce fait en disant que la convergence d’une
série de Fourier en un point est une propriéié locale de sa généra-
trice.

Du Bors-REymonp a établi le premier qu’il existe des fonctions
continues dont la série de Fourier diverge4. M. FEj£R en a donné
plusieurs exemples simples . En voici un ©:

La fonction périodique, de période 27, définie dans 0<z<nx

par
o . ) 3
G RQ sin (2% )
[(x) = Z T

1

et dans (—z, 0) par la condition de parité

N
2
i
=
=2
l
S|
A
&
A
o

t Lebesgue 5, p. 61. — 2 Lebesgue 5 i
7 , D. 61. , P. 68. — 3 Lebesgue 5, p. 60. — 4 -
Reymond. — 5 Fejér 3, 4, 5. — 6 Fejér 4. gue o - 60 b Bois
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est partout continue. Si on la développe en série de Fourier
(de cosinus, puisqu’elle est paire), la série de Fourier de cosinus
diverge au point de continuité x = 0. ' |

Nous dirons qu’une fonction présente la smgularlte de Du
Bois-Reymond en un point, lorsqu’elle est continue en ce pomt
et que pourtant sa série de Fourier y diverge.

L’existence de fonctions possédant la singularité de Du Bois-
Reymond est liée étroitement & ’ordre de grandeur des cons-
tantes de Lebesgue |

1

—

i
0

™
sin (2n 4 1)t
sin ¢

'dt , . (6)

Soit N Iensemble des fonctions périodiques, de période 2r
intégrables et bornées, telles que | f(z) | <1. Soit s, () la n-iéme
somme partielle de la série de Fourier de f(x)

n

_ ‘
1 sin (2n +
= SAV__;E/ R Vfa 4 20 de .

y=0
On a donc
P |
1 sin (2n 4+ 1)¢ _
" :'—7:'-/ sin ¢ ldt—_p"‘
0
En prenant
' sin (2n 4 1)1

[(x 4 2t) = sgn. e
on voit ‘que $,(z) = pa. p. est donc le maximum de |s,(x)| au
point z, dans le champ fonctionnel J1T. L’existence de fonctions
continues dont la série de Fourier diverge tient essentiellement,
comme ’a montré M. LEBESGUE au falt que lim p, =0 ; c’est

n= ®

dallleurs, une conséquence de théorémes généraux sur les
intégrales singuliéres que MM. LEBESGUE2, HaAr3 et HAuN ont
étudiées d’une maniére approfondie. p, est une’fonction crois-
sante de n et sgn(A’p,) = (—1)""'(v=1,2, 3,...)5

La valeur asymptothue de p, a été etudlee par pluswurs

1 Lebesgue 5, p. 86-87. — 2 Lebesgue 6, — 8 Haar 4, — ¢ Hahn 1. — ‘5'Sze.g6'. i
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auteurs . On a

» T R :
AN L, vF 1T 16~Qt "3 5 T T T ayEn 4 1 — 1
~‘~‘"T~.’27 g2n+'l+2n+’l—7r22 hy? — 1
v=1 v=1
k .
4l (2 E 4+ R ( 0,1, 2 )
= —log (2n iy - (n=0,1 2, ..
x2 0 - Zn—{- k41

Les «, sont des constantes et le reste R, de la formule
asymptotique est tel que Ry n* 1?2 reste borné lorsque n ~» .

4, M. LEBESGUE a attiré’attention sur une autre particularité:
la série de Fourier d’une fonction partout continue peut étre
toujours convergente et pourtant ne pas converger uniformé-
ment dans (0,2x) 2 M. STEINHAUS & donné un exemple dans lequel
la convergence n’est uniforme dans aucun intervalle®. On dit
qu’une fonetion continue dont la série de Fourier est partout
convergente, présente en un point la singularité de Lebesgue
lorsque sa série de Fourier ne converge pas uniformément dans
le voisinage de ce point. M. NEDER * a montré qu’étant donné
un nombre m (0 < m < 2x), il existe une fonction continue dont
la série de Fourier converge partout et pour laquelle cependant
I’ensemble des points de 'intervalle (0,27) ou le degré de conver-
gence non uniforme de la série est infini a une mesure > m.

5. Un phénomene intéressant de convergence non unﬁorme,
qui porte le nom de phénomene de Gibbs, a été particuliérement
étudié 5. Il concerne l'allure des sommes partielles s,(x) de la
série de Fourier d’une fonction, & variation bornée au voisinage
d’un point de discontinuité x = a, et consiste dans le fait que
sp(z) a dans le voisinage du point a des maxima et minima
relatifs dont les limites pour n- o sont extérieures a linter-
valle (f (a + 0), f (a—0)). L’essentiel de ce phénomeéne peut s’étu-
dier sur la fonction définie dans (— «, =) par

I
— 35 —rn<x <0
) 0 x =0
-
—é. ’ 0 < x < T
S =+
L Fejér 5, 8; Gronwall 1, 5; Szegd. — 2 Lebesgue 4; 5, p. 88. — 3 Steinhaus 3.

— 4 Neder 1. — 5 Bécher 1, 2; Carslaw; Gronwall 3; Tackson
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et en dehors par périodicité..La série de Fourier de cette fonction

est
sml’n — 1yx
2 .
2 2n — 1 -

I1 suffit d’étudier les 'sommes partielles s, (x) dans I’intefvalle
0<z<n On as,(z) >0 pour 0 <z < x et le maximum absolu

‘M, de s,(z) dans 0 < z < & est atteint au point z = —27—;; M, croit
avec n et | |

. . 1l
limM, = = 1,85 ... >§ . (8)

n=» ©

0

6. FEJER 2 a montré comment on peut, & ’aide de la série de
Fourier, ou plus exactement, des constantes de Fourier d’une
fonction f(x) & variation bornée, déterminer le saut f(zx + 0)
— f(x—0). 11 suffit de déterminer une des racines positives g de
Péquation | | |

[Plar=0 (9)

pour conclure que

Jlim sn(wi%> = f(x '_*:0) -

n- o

flx 4+ 0) — f(x — 0) = lim [sn (x —+ %) — sn<x — in)] . (10)

Il a montré encore que

d’out

Nn=> ®©

lim —2/. b, cos kx — a, sin kx) = f(x 4 0) — f(x — 0) . (11)
k=1 | . : '

LukAcs 3 a trouvé une autre expression du saut; il a montré |
que |

%mp+m—ﬂx—m1=hm

n*plog

2 (by cosvx — a,sinvx) (12)

sous la seule hypothése que le premi'er membre existe.

-1 Carslaw. — 2 Fejér 10; Sidon. — 3 Lukaes. .
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2w

7. S| f(x )P (p > 1) est intégrable dans (0, 2r), f‘g,, ) |7 dx
0
reste bornée pour n - et

[Af s, de—=00 (13)

Dansg le cas particulier ou p =2, Harpy et LirrLEwoop ont
montré 2 que
(sp — 8)2 4+ (s, — 12+ ... + (5, — )

Iim — =0 (14)
N @ n+1

en tout point ou s :%[f(x 4+ 0) + f(z—0)] existe. Si dans (14)

on prend s = f(z), la formule est vraie presque partout.

8. RiemaNN a déja donné des conditions suffisantes pour que
la série de Fourier d’un produit f(x) A (x) converge en méme temps
que la série de Fourier de f(x). Ces conditions ont été élargies
par M. LEBESGUE 3 puis par M. STEINHAUS qui montre que la série
de Fourier de fA converge au point z de convergence de la série

' . ) . INE — A
de Fourier de f si f est bornée et si A(zx) est telle que (> + tl ]

soit intégrable par rapport & ¢ dans tout intervalle 4

9. M. Lusin® a indiqué une condition nécessaire et suffisante
pour que la série de Fourier d’une fonction de carré intégrable
converge presque partout. Mais cette condition n’est pas simple
et nous ignorons si la série de Fourier d’une fonction continue
ou d’une fonction de carré intégrable a nécessairement des points
de convergence et si leur ensemble est de mesure positive. On
sait que la série de Fourier d’une fonction partout continue
peut avoir une infinité partout dense de points de divergence
et que 'ensemble des points de divergence peut avoir la puis-
sance du continu . M. KoLMoGOROFF 7 a construit une fonction

1 M. Riesz 8. Dans le cas p = 1 on ne peut pas affirmer que
a7

f |f—s,ldx 0.

0

}’oir 4 ce sujet S.Banach et H. Steinhaus 1 et Hahn 1. — 2 Hardy et Littlewood 2. —
3 Lebesgue 5, p. 117-119. — 4 Steinhaus 2. — 5 Lusin 4. — 6 Neder 1. Le raisonne-
ment de Du Bms—Reymond 1 pour établir I’existence d’un ensemble partout dense de

points de divergence n’est pas concluant. Voir & ce propos Neder 5. — 7 Kolmogo-
roft 1.
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intégrable, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si f(x) est de carré
intégrable, les suites partielles Su, (2) de la série de Fourier
convergent presque partout vers f(x) lorsque p - o si

Il
P S k>
P
k étant une constante 1.
Aprés que MM. Fatou?, JERoscH et WEYL 3, WEYL ¢ eurent
démontré certains résultats moins généraux, M. W. H. Young®

établit que si 2 A, est une série de Fourier, 2— (¢ > 0) est une
n

série de Fourier convergeant presque partout. M. HArpY?® a
réussi & faire voir que dans ce résultat n¢ peut étre remplacé par’
log n. Dans le cas spécial des fonctions de carré intégrable,
MM. KoLMOGOROFF. et SELIVERSTOFF 7 ont montré que la con-
vergence de 3 (a) + b?) (log n)!*+3(3 > 0) entraine la convergence
« presque partout » de la série de Fourier 3 A, et M. MENcHOFF 8
a montré que le méme résultat a lieu si 3 (| a,,‘lz*e + | bn [*7F),
(e > 0), converge. |

10. On ne sait pas grand chose sur les propriétés que doit
avoir f(x) pour que sa série de Fourier soit absolument conver-
gente. M. S. BERNSTEIN ® a cependant démontré que si f(z) est
a variation bornée et satisfait uniformément dans tout I'intervalle -

(0,27) & une condition de Lipschitz d’ordre « < %, sa série de

Fourier est absolument convergente; si « > +, il y a des fonctions
dont la série de Fourier n’est pas absolument convergente.

§ 4 LA SOMMATION DES SERIES DE FOURIER PAR LES MOYENNES
DE GESsARro. ‘

1. On peut toujours remonter d’une série de Founer — c’est-
a-dire de la suite des constantes de Foumer — & la génératrice

3

1 Kolmogoroﬂ.’ 2. — 2 Fatou 1.—87J erosch et Weyl — 4 Weyl. —5 'W. H. YOung: :
- 41, —9 Hardy i, —7% A Kolmogoroﬂ’ et G Seliverstoﬁ' — 8 Menchoﬂ’ 3 - 98, Bern-

. stein, -
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en intégrant terme & terme la série et prenant ensuite la dérivée
de la fonction somme. Mais ces opérations constituent un double
passage a la limite. FEJER* a montré que 'on peut remonter plus
simplement de la suite des constantes de Fourier & la généra-
trice 4 'aide des moyennes arithmétiques s (z) des sommes

partielles s, ()
n
s, (x) = E A, (15)
0

So b s d s & ,
(1) N 0 1 IL_ . o r
s () = " — A, + 2 <1 . 1>Av o (16)

'J=1

11 a fait voir que s’ (x) converge vers [l + ) j flx =9 en tout

point ou cette expression existe, en particulier donc en tout
point de continuité de f(x) et que la convergence est uniforme
dans tout intervalle entiérement intérieur & un intervalle de
continuité de f(x). Plus généralement, s’ (z) converge encore

vers f(x) si2

. |
lim —
t=0 ¢

t
f | flx + 2u) + flx — 2u) — 2f(x)|du = 0 .
0
Or, cette limite est nulle presque partout. Les moyennes arith-
métiques s\ (z) convergent donc presque partout vers f(z).

L’important résultat de FEsEr a étéle point de départ de toute
une série de recherches dont le caractére général est 'introduc-
tion de la théorie de la sommabilité des séries divergentes dans
Pétude des séries de Fourier. Série trigonométrique et série de
puissances étant en étroite relation, puisque la premiére est la
partie réelle ou imaginaire d’une série de puissances sur un
vercle, il est naturel d’appliquer aux séries trigonométriques les
procédés de sommation employés dans D’étude des séries de
plissances.

2. La méthode de sommation qui s’est montrée la plus féconde
sl la méthode des moyennes arithmétiques de Cesaro 3. Soit

y + uy + ...+ w, 4 ...
—

' Fejér 1. — 2 Lebesgue 2, 6. — 3 Cesaro 1.
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une série quelconque convergente ou non. Formons la serle
de puissances '

flt)y = uy 4+ wit + .o 4 u, " -+

et supposons son rayon de convergence égal & 1. On sait, depuis
Abel, que si Zu, converge et a pour somme s, lim f(f) = s.

t=>1—0

Mais on connait de nombreux exemples ou, la limite considérée
de f(t) existe et ou Zu, diverge. 1l est alors naturel de convenir
de regarder cette limite comme somme de la série divergente:
c’est le principe du procédé de sommation de Poisson sur lequel
nous reviendrons plus loin (§ 6). Notons simplement que la

formation de lim f(t) exige en réalité un double passage & la
t=->1—0

limite & partir de la suite u,, car la formation de f(¢) en inclut
déja un. CEsARO a montré comment, trés souvent, on peut se
restreindre & un seul passage & la limite, et celd a I’aide du
théoréme suivant !:

Soient @y, @y, .oey Bny oo Poy P1s +oes Pay ... deux suites illimitées.
Soit p,,>0 n~0 1, 2,.

Supposons que la série Epnt” converge pour |t| < 1 et

n=0

. ,
diverge pour ¢t = 1. Si lim — = s existe, alors 2’ a,t* converge

n-+w Pn
pour [¢| <1 et
Eant"

' 0
lim —— — s .
t=> 1—0 *®

n
pnt
0

Nous appliquerons ce théoréme au cas ol

Pod pit+ o+ p " = (1 — g 3> —1)

-]

(1 — "t’)—(1+o“) }: u, t" .
-

Il

ay + at 4 ... 4 a,t" + ..

1 Cesaro 2.
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Par conséquent,

~ o~ 1 o ’
Py = 1 sl = (17)
n ll +1 Iw ) + ) n ’
et
n
., N — ) o
((” - (JHJ;)_.J uv e SII()‘ . (lb}

u=10

Le théoréme de Cesaro montre donc: si
existe, alors

Ce résultat conduit a la définition suivante de la sommation

de Cesaro d’ordre o9, (0 > — 1).

La série 2 u, est dite sommable (C, d), et a pour somme s si
(3 ,
S S _ E el B, = Z n—v+o+Nl(n40
T atdr T cdl T e — oy )51
) n V=20

n
RN AT S P R
n -+ o n—+ 6 —1 ”+°*—v+l
=0

converge vers s lorsque n - oo,

La convergence ordinaire est identique a la sommabilité (C, 0).
Essentiel est le fait qu’une série sommable (C, d,) est sommable
(C, d) vers la méme somme lorsque ¢ > J,. L.a somme formelle
de deux séries sommables (C, ¢) est encore sommable (G, 0) vers
la somme des sommes (C, &) des deux séries. Le produit formel,
d’apres la regle de Cauchy, de deux séries dont I'une est som-
mable (C, @) et autre (C, ¢') est sommable (C, ¢ + 9" -+ 1) vers
le produit des deux sommes .

La suite continue des ordres de sommation de Cesaro a ’avan-
tage de constituer une échelle de convergence. Car, pour toute

(19

i Ces4ro 1, 2; Chapman 1, 2.

24

[’Enseignement mathém., 24¢ annde; 1924 et 1925.
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série, il existe un ordre d, (éventuellement 0y = — 1 ou §, = o)
tel que (si & 3= ®) la série soit sommable (C, 8) pour & > J, et
* (si &y 5% — 1) ne soit pas sommable (C, ) pour ¢ < d,:

3. L’étude systématique de la sommation (C, d) des séries
de Fourier a conduit aux résultats suivants ?.

La série de Fourier d’une fonction intégrable converge (C, d)

(6 > 0) vers % [f(x + 0) 4+ f(x—0)] en tout point ou cette
expression existe2 Si f(x) est continue en chaque point z d’un
intervalle ¢ < 2 <b, la convergence est uniforme dans cet
intervalle. Ceci n’a plus lieu, en général, si & < 0. Le résultat
primitif de Fejér est contenu dans le précédent (8 = 1).

Si |

t

lim-":- | fix + 2u) + f(x — 2u) — 2f(x) | du = 0.

t=> 0
- 0

la série converge (C, 9), (3 > 0)3. C’est pour ¢ = 1 le résultat de
Lebesgue énoncé plus haut. M. Harx 4 a fait voir que ce résultat
ne subsiste plus, en général, si 'on remplace la condition précé-
dente par la méme débarrassée du signe de valeur absolue sous
- Dintégrale; il subsiste, par contre, si ’on remplace la sommation
(G, 9) par la sommation (C, 1 + 9) 8. -

Si g est un entier positif et s1 d > ¢, la série de Fourier converge
(C d‘) vers la q ieme dérivée généralisée de la g-iéme intégrale

f ffdx

La lumlere que ces théorémes jettent sur la nature de la con-
vergence des séries de Fourier est encore plus grande lorsqu’on
introduit pour les sommes si? des constantes p(® analogues
aux constantes de Lebesgue p = p(®, définies comme borne
supérie‘ure de |59 (x)| dans le champ des fonctions f telles
que | f(x)]|.< 1. p'@) est une fonction bornée de n pour d > 0 et
pour ¢ > 1 on a p'd = 1. Les sommes partielles s de la série
de _Foumer d’une fonotion bornée f(z) sont donc bornées pour
0> 0 et lorsque 0 > 1 elles sont toujours comprises entre la borne
inférieure et‘la bome supérieure de f(x). on peut ‘se‘demander

1 Chapmani 23 Gronwa114 Hardy 1; M. Riesz 1, 7; 'W. H. Young 8; Kogbetliantz
2. — 2 M. Riesz 1, 7; Chapman 2; Gronwall 4; W H Young 3. — 8Hardy1 e
vy4Hahn2-——5WHYoung2——-6WHYoung3 : ‘
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ce qu'il advient du phénoméne de Gibbs pour une sommation
d’ordre & < 1; la question a été traitée par H. CRAMER?! qui
établit Pexistence d’une valeur positive k inférieure a 1, telle
que lorsque ¢ < k le phénomene de Gibbs a lieu et que lorsque .
0 > k il n’a pas lieu.

4. La convergence ordinaire et a fortior: la convergence (G, d)
(0 > 0) d’une série de Fourier est une propriété locale. Ce n’est
plus le cas, en général, lorsque ¢ < 0. La convergence en un point
dépend alors non seulement du comportement de la fonction
dans le voisinage de ce point, mais de son comportement dans
tout l'intervalle (0, 2m). C’est une propriété non plus locale,
mais globale.

L’influence des points singuliers de la fonction sur les proprié-
tés de convergence de sa série de Fourier est mise en évidence
dans le résultat de Kogbetliantz?: Si f(z) est & variation bornée
dans les intervalles (0, £—¢) et (&£ + ¢, 27) et si dans Pintervalle
(£ — ¢, £+ ¢) elle peut se mettre sous la forme

o le—E7" + o(a)

©(x) étant & variation bornée dans (£ —e¢, £ 4 ¢), ¢, une constante
el 0<a<1, la série de Fourier est sommable (C, 9), > «—1 en

tout point = = £ vers —1— [f(x + 0) 4+ f(xz — 0)]. Par contre, elle

n’est ‘plus sommable (C, d) en ce point si d <a—1. Les moyen-
nes s(? d’ordre ¢ <a—1 ne sont pas bornées en n; par contre,
celles ordre ¢ = o — 1 sont bornées en n, mais ne convergent
pas pour n~ . Il est d’autant plus remarquable que si la fone-
lion est & variation bornée dans tout Iintervalle (0, 2r) la série
converge (G, 0) partout vers %[}‘ (x 4- 0) 4 f(z — 0)] lorsque
o> — 183,

0. HarpY et LirrrEwooD 4 se sont posé la question de trouver
es conditions nécessaires et suffisantes pour qu’une série de
Fuurier soit sommable au point z par une sommation de Cesaro
1 ordre suffisamment élevé. Ils sont arrivés au résultat suivant:
La condition nécessaire et suffisante pour que la série de Fou-
rier d’une fonction mtégrable f (z) soit sommable par une moyenne

!

! Cramer. — 2 Kogbetliantz. — 3 W. H. Young 15. — 4 Hardy and Littlewood 3.
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de Cesaro en un point z est qu il existe un entler k tel que 51 |
‘l’on pose EE
. e(t) = f(.x -+ t) + f(.x.-—— t — 2f(x)

t '
- S ‘
= 7f<p(t)dt , %(t f?l(t KT
o

lim cpk(t) = 0.

t=0

on ait

Ils ont montré en particulier que si f est bornée dans un inter-
valle contenant le point z, la série de Fourier est ou bien som- .
mable au point z pour toute moyenne de Cesaro d’ordre ¢>0 ou
bien n’est sommable par aucune. La condition nécessaire et
suffisante de sommablhté est dans ce cas: hm 0. () = O1

§ 5. LES SERIES DE FOURIER RESTREINTES.

1. En général la série obtenue par dérivation terme a terme
d’une série de Fourier diverge partout. Mais M. FEjEr? a
- déja établi que 'on peut encore, & ’aide des moyennes arith-
métiques, remonter de la série dérivée & la dérivée de la généra-
trice. M. W. H. Younc? a montré que la série dérivée terme &
terme de la série de Fourier d’une fonction & variation bornée
converge presque partout (G, d),d > 0, vers la dérivée de la fonc-
tion. Plus généralement, il a établi que 4: '

a) la convergence (C, 1) de la prem1ere dérivée (formelle) d’une |
série de Fourier (c’est- a-dire la- série obtenue par dérivation -
terme a terme) en un point est une propriété locale; |

b) qu’il en est de méme de la convergence G, p) de la P 1éme‘
dérivée. ‘ S

P £ .
Cf@) ‘est
dxP

continue et a variation bornée dans le V01smage d’un pomt la |
- p-iéme dérivée de la série de Foumer de f converge (C p) vers
& . |

dx

11 resulte de ces propositions que si, par exemple,

‘au point cons1dere

S 1Hardy ‘and Littlewood 3; M Riesz 7 -— 2Fejér 4 --3W H Young 20 —
AAWHYoungsi.,; SR y e L » SRR




SERIES TRIGONOMETRIQUES 37

2. Ces résultats ont conduit M. Young a introduire sous le
nom de séries de Fourier restreintes de classe p une classe de
séries trigonométriques qui sans étre nécessairement des séries
de Fourier s’en rapprochent beaucoup par leurs propriétés et
qu’il caractérise par les deux propriétés suivantes:

I. La série trigonométrique obtenue en intégrant p-fois
terme & terme la série donnée (on laisse de ¢6té le terme constant)
est une série de Fourier dont nous désignerons par F(z) la géné-
ratrice. «

II. Dans un intervalle partiel (a, b) d’un intervalle de pério-
dicité, F(z) est I'intégrale p-uple d’une fonction f(z) intégrable
dans (a, b). On suppose donec que dans (a, b)

Fla) = f(;;‘/’fd.z o fla) =S

La série trigonométrique donnée est alors appelée par
M. Young une série de Fourier de classe p restreinte d intervalle
(a, b) et f(z) la fonction associde & cette série dans l'intervalle
(a, b). La raison de cette dénomination est que dans (a, b) et
relativement & la sommation de Cesaro d’ordre p une telle série
-a exactement les mémes propriétés de convergence que la série
de Fourier d’une fonction intégrable dans (0,2n) et coincidant
avec f(z) dans (a, b) L

3. Pour pouvoir donner pour une série de Fourier restreinte de
classe p des critéres de convergence relatifs & une sommation
d'ordre g<p, il est nécessaire d’ajouter une hypothése supplé-
mentaire relative non plus seulement & Iintervalle (@, b) mais
a tout lintervalle (0,27). Comme hypothése supplémentaire,
M. W. H. Young ajoute la condition

b

n

= 0 .

lim = lim

nsw pf— n=w nf—
Les conditions de convergence (C, p—1) dans (a, b) d’une telle
scrie sont alors les mémes que celles de la convergence (G, p —1)

de la.série de Fourier d’une fonction intégrable dans (0,27) et
coincidant avec f(z) dans (a, b) 2.

1'W, H. Young 31. — 2 W, H. Young 23, 33.
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En particulier .donc, si p =1, nous voyons qu’une série de
Fourier restreinte de classe 1, telle que a,~ 0, b,~ 0 jouit
dans P’intervalle de restriction et relativement & la convergence
“ordinaire de toutes les propriétés d’une.série de Fourier.

M. Younc a fait de ces séries une application importante &
Pétude de la convergence des séries de polynomes de Legendre ?, 1
“des séries de fonctions de Bessel? et de certaines séries trigono-
métriques non harmoniques 3. Une autre application intéres-
sante ¢ généralise un théoréme de Farou ® affirmant qu’une
série de puissances Za,z", telle que a, - 0, de rayon de
convergence 1, converge sur le cercle de convergence en tout
point de régularité de la fonction analytique engendrée par la
série. Ce théoréme de Fatou a été dans sa démonstration nota-
blement simplifié par M: M. Riesz ¢ qui a montré de plus que
la convergence est uniforme sur un arc de régularité et qui a,

. o, o v P all
en' remplagant la condition a,~ 0 par la condition — -+ 0

(8 >0), montré que le théoréme subsiste, & condition de rem-

placer la convergence ordinaire par la convergence (G, d). Si
a

=)
-n
(G, 6) aux points de regularlte.

< M, les sommes partlelles de la série restent bornées

§ 6. AUTRES PROCEDES DE SOMMATION.

1. 11 est quelquefois utile d’introduire d’autres procédés de
sommation équivalents au procédé de Cesaro. C’est ainsi qu’on
peut, pour les indices & positifs entiers, définir avec HOLDER7 un
procédé de sommation que MM. Kxopp8 et ScHNEE ® ont
montré equwalent au procédé de sommation (G, 8), CHAP-

MAN10, M. Riesz! et W. H. YounG!? ont étudié de tels procédés. -

2. M de la VALLEE Poussin13 a donné un procedé nouveau

pour ‘sommer une série 2 Un y 11 cons1ste a donper comme

: 1W H Young29 30. -—-SW H. Young35 -—-BW H, Youngsls ——-4-W H. Young o
- 82.— 5 Fatou 1. — & M. Riesz 8, 5, 6. — 7 Holder, — 8 Knopp 1, 2, 8. i~ 9 Schiee;
voir aussi Landau {, 2, — 10 Chapman 1. —1 M. Rtesz 1,2; volr aussi Hardy and Riesz
1 — 12 W H. Young 3 - 18 Vallée—Poussin 2 :

/
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somme a la série la limite de

2 vin — 1) ... (n — k4 1) y ' (20)
(n 4 1) n—|—-2)...(u—{—k) k-

Ce procédé est plus puissant que celui de Cesaro d’ordre quel-
conque. On peut en effet montrer! que toute série sommable
(C, 9) est sommable (V. P), ¢’est-a-dire par le procédé de M. de la
Vallée-Poussin; mais que, par contre, il existe des séries som-
mables (V. P) qui ne sont sommables par aucune moyenne
de Cesaro.

Si I'on semme une série de Fourier par le procédé (V. P.) on
voit que la série a pour somme (V. P.) 'expression

t
o 2 [Tl + 0 + fle — 0]de
-0 0

en tout point ol cette limite existe, donc presque partout et
que si, au point z, f possede une dérivée généralisée d’ordre k,
la série obtenue en dérivant p fois terme & terme la série de
Fourler de f converge (V. P.) vers cette dérivée généralisée.
Pour toute fonction intégrable

27
lim f]f(x) —V, (x)|dx = 0
1= © 0

V, deésignant la n-iéme somme partielle (V. P.) de la série de
Fourier de f. '

A désignant une constante, le procédé de sommation ou ’on
remplace V, par

n
Vi = .+

k=

nin —1)...(n — k-4 1)
(n+ 20+ 1) (n+ 28 4+ 2)... (n + 2)\+/i)u

est équivalent au procédé de M. de la Vallée-Poussin 2.
q 14 * * hs -
0. D’autres procédés de sommation interviennent dans cer-

1 Gronwall 6, 7; Moore, — 2 Kogbetliantz 1.
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- taines recherches; ¢ ‘est le cas du. procede de sommatwn dit de
Poisson, ou I’'on cherche la limite pour r - 1—0 de la série

A P ) {
® ' T R ' )
) el on.
2 E a, cos nx <+ b, sin nx)r

1.

et de celui qm se presente dans la theorw de la propagatwn de
la chaleur :

Clim | % a cosno + b sinne)r™ |
M_lﬂ[ﬁ 4—_2( n €OS H- n ?) ]

Notons encore le procédé de Riemann:

lim [ +\1 (812:k> a,cosnx 4+ b, sin nx)] .

h=0

Ces divers procédés possédent d‘ans le cas des séries de Fourier
des proprletes analogues & celles que posséde le procede de M. de
la Vallee Poussm 1

§ 7. LA THEORIE DES CONSTANTES DE FOURIER.

1. L’idée d’édifier & coté de la théorie de la convergence des
séries de Fourier une théorie,des suites des constantes de Fourier .
semble avoir été formulée pour la premiére fois d’une  fagon
nette par Hurwitz? qui'a montré que ’on peut additionner et
multiplier entre elles les équivalences des fonctions intégrables
bornées et qu'une équivalence intégrée terme & terme donne
lieu & une égalité. Le probléme général de cette théorie des
constantes de Fourier est le suivant: De propriétés connues de
f(z), quelles conséquences conclure pour la suite de ses constantes .
. de Fourier et inversement. | .

'En réalité on sait trés peu de choses sur les caractérlsthues
- d’une suite de constantes de Fourier. On sait que a,-0 et

. que 2-— Gonverge 3, 11 n ex1ste pas de fonctlon Z( ) tell,eque - )

S T

.| * Vallee-Poussin 2, Hahn 1, — "Huirmtz‘sp-~e~,"s'héhesgue‘~"5;p-‘-.‘fgdz,,mz,./.a_.;;,;; e

Vo
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A(n) < Mn +1), lim A(r) = «© et pour laquelle him a,l)\(n) =

n=p & N =» ©

lim b, A (n)= 0 ait lieu pour toute suite de constantes de Fourier *.

¥ Mais ces propriétés sont loin d’étre suffisantes pour caractériser
‘8 une suite de constantes de Fourier.

On sait encore que si une fonction f est & variation bornée,
ses coefficients de Fourier satisfont & des inégalités du type

. M M
a0 < e dbi<—. e

n

ou M est une constante et que si elle est de plus continue et
périodique

pt

,..“

L )
na, — 0 , n/)n > 0 2,

R
..
3

On sait encore que si f est continue et périodique une relation
na, ~ a, nb, > b ne peut avoir lieur que st a =b=03.

48 ment a une condition de Lipschitz, ou posséde des dérivées
jusqu’a un certain ordre, ou lorsqu’elle est analytique, les iné-
@ galités (21) peuvent étre remplacées par de plus précises.

M Du fait qu’une suite donnée a,, b, est une suite de constantes
de Fourier on ne peut pas conclure que si ’on intervertit dans
cette suite 'ordre d’une infinité de termes, la suite obtenue
est encore une suite de constantes de Fourier. Par exemple, si
"3 Ton permute les a, et les b, de méme indice entre eux, la nou-
A velle suite n’est plus nécessairement une suite de constantes
A8 de Fourier. Le role disymétrique des a, et des b, est d’ailleurs

P ’ . . ' [) .
mis en évidence dans le fait que 3 ,—: converge toujours pour

’ . i . . - a
une série de Fourier, tandis que },% ne converge pas néces-
T

sairement. Sous certaines conditions, M. W. H. Younc a établi

2 que

B | 24

4‘ © a,l, 1 f/'( ]O 1 d
—_— = — x [ e
A 21 n 2T ) gZ{'l — cos x) o 5
¥ -7

1 Lebesgue 6. — 2 F. Ri

esz 5; Neder 3; Steinhaus 8, Czi . — 38 i —
FWH. Young 1o, _ _ .8, Czillag. — 38 Steinhaus 8, 9.

Lorsque la fonction f continue périodique satisfait uniformé--
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or, I'intégrale du second membre diverge pour certaines fonetions
intégrables. De méme, si dans la suite a,, b, des constantes de
Fourier d’une fonction on remplace une infinité de termes par -
zéro ou si 'on supprime certains termes en déplagant 1’indice
de ceux qui suivent, les suites obtenues par ces opérations ne
sont plus nécessairement des suites de constantes de Fourier.
M. W. H. Younc ! a étudié certains cas ot du fait que la suite
b

a n
2(n)’ ¢ (n)
est encore une suite de constantes de Fourier, ¢(n) étant une
fonction positive croissante tendant vers linfini. I1 a étudié
aussi le cas ot les ¢(n)! sont les constantes de Fourier d’une fone:
tion ou les coefficients de la série dérivée d’une série de Fourier. |

2. Les résultats les plus importants de la théorie des constantes
de Fourier sont contenus dans la formule de ParseEvaL, dans
‘le théoréme de Rresz-FiscHER et dans leurs généralisations. Ces
théorémes se rapportent auf fonctions f(xr) dont une puissance
p-iéme (p > 1) est intégrable. - : | A

La formule de Parseval 2 énonce que si f(x) est de carreé mte?

-y, by est une suite de constantes de. Fourier, la suite —

grable c’est-a-dire si f fz.dx est ﬁme la série 2<a“ + b’)

converge et que - L
1 o a—; ‘ Q'OW g -2‘ o ‘
offzdx = + ‘?-.-(an + bn) . »(22;

Une conséquence est que si g(z) est une seconde fonction de
carré intégrable ayant la suite «,, 8, comme sulte de constantes \
de Fourier, la série X(a,on + b, f3,) converge et

——ffgdx:a °‘0+2(an a 4+ b B). - (23

Le théoréme de Riesz-Fischer est relatlf aux séries de fonctions
orthogonales. Dans le cas particulier des séries trigonométriques -

- il énonce que: Etant donnee une sulte de constantes reelles

1 W. H. Young 7, 9, 10, 11, 183, 15, 16. —_— 2Lehezsgu& 5 p 100 voir aussi Valiée- B
Poussin 1; Hurwitz 3, 4; Fisther {, = 8 F, Riesz 1 HE Flscher 2. '_W. EEL Young,;.
-~ and G. C Young; Plancherel. ; :
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a,, b, assujeties & la seule condition: 3 (@, 4 b2) converge, il

existe une et, & une fonction d’intégrale nulle pres, une seule

fonction f(z) ayant la suite donnée @n, b, comme suite de cons-

tantes de Fourier. Cette fonction f(z) est de carré intégrable.
Ce théoréme montre en particulier que si |

flx) oo % - 2 (a, cos nx —§—'bn sin nx|
1

est de carré intégrable, la série conjuguée

o

S (b,cos nx — a, sin nx)

1

est encore la série de Fourier d’une fonction de carré intégrable.

3. La généralisation donnée par M. W. H. Youncg?! de ces
théorémes a été complétée sur un point par M. HAUSDORFF 2.
Sans avoir le caractére simple du théoréme de Riesz-Fischer
elle est aussi intéressante. Pour Iexprimer sous une forme
concise, notons

2
1 p —r
fk;:?—nff(x)e_'mxdx (i = V—1), k=0, +1, +2,.
0
Evidemment
' 1 : 1. :
f = §(ak —b,) [y = 5l + by) .

Notons encore
1

1
- y , T 7
5, = <E A |P> , I, = <ﬁf|n"dx>
o .

et gupposons

—= 1.

1
I =

1
p>1’ 1-1 -
q > 7T

Alors:
I. 8i p < g et si la suite arbitraire de constantes ay, b; est telle

1 W H. Young 9, 10; pour d’autres généralisations, en particulier pour I'étude du
Cas ol (23) subsiste en Sommant le second membre par -une moyenne de Cesaro,
voir W. H. Young 7, 8, 15. — 2 Hausdorft,
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que S, est fim les ax, by sont les constantes de Fourier d’une
fonetlon f(x) telle que |f(z)|? soit intégrable. De plus

IS8, .

I1. Si p<getsila fonctlon arbitraire f(x) est telle que | f(x) |?
est intégrable, la- série S, formée & I’aide des constantes de
" Fourier de f converge et

Pour p=¢=2, on retljouve'le théoréme de Riesz-Fischer ot
la’ formule de Parseval. .- - |
4. Si les fonctions f(z), g(x) sont telles que |[f|? et |g]?

(% +—;- =1,p>0 ¢ > O) sont intégrables, la formule de

Parseval (23) subsiste . |

5. La formule (23) subs1ste encore si f est intégrable et g &
variation bornée 2.

6. Il n’est pas possible de caractériser d’une maniére s1mple ,
la suite des constantes de Founer d’une fonction continue. On
peut se demander, par exemple, §’il existe un exposant a < 2 tel
~ que la série 3(]a.|* + | b.|%) converge pour toute fonction con-
tinue. Mais la réponse est négative 3. -

Il est intéressant de noter que si la suite des constantes (n, bn
est telle que 3(| a, |* + | b, |*) converge pour un exposant «>2 la
série ZA, peut ne pas étre une série de Fourier, ni méme une
série de Fourier généralisée, engendrée par une fonction inté-
grable au sens de Harnack Lebesgue C’est par exemple, le
cas des séries 4 :

- "
Yn%cos (n®x) ,, Xn %sin(n?x), = < 7 -
TircaMARsH ¢ et PERRON ® donnent d’autres exemples, &

certains égards plus S1mples

7. Des résultats trés curieux ont été obtenus par M CARA-
THEODORY7 sur les constantes de Fourier des fonctlons positives.

Pour que la série de puissances 1 + 2 (@n + 1by)2" converge.j

1 ‘M. Riesz 8 Young 8. — 2 Young 8. —3 Carleman ~—-4 Hardy and Littlewood i«
— B Titehmarsh 1, — 6 Perron — 1 Caratheodory 1,2, .
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pour |z| <1 et ait pour |z! < 1 sa partie réelle positive, il
faut et il suffit que le point (ay, @y, ..., @u; by, by, ..., b,) de I'espace &
9n dimensions appartienne au corps K, défini comme le plus
petit corps convexe contenant la courbe

x, — Z2coso Xy = 2cos 29, ..., x, = 2cos ny

y, = — 2sing , Yy = — 2sin 20, ..., ¥y, = — 2sinng

et cela quelque soit n.
M. TepLiTZ! a réussi & exprimer ce résultat sous forme algé-
brique. En posant

2 , a, + ib, e, 4 1b,
a, — b, 2 a, 4+ ib,_,
D =] a— thy a, — ih, a,_o + Ll;n_2
. . 9
a, ll)n ? a/z—’l ll)n-——l

et en désignant par H, la forme d’Hermite dont D, est le dis-
criminant, son résultat énonce qu’une fonction continue pério-
dique de période 2r est > 0 lorsque les coefficients a,, b, de sa
série de Fourier sont tels que les formes H,, H,,..., H,, ... ne
sont pas négatives.

Ces théorémes sont en relation étroite avec le théoréme de
Picard-Landau. Ils appartiennent plutét au domaine de la théorie
des fonctions d’une variable complexe; c’est pourquoi nous
n’insisterons pas ici sur les développements et les recherches
qu’ils ont provoqués. Notons simplement qu’ils permettent de
donner des conditions nécessaires et suffisantes pour qu’une
suite de constantes soit la suite des constantes de Fourier d’une
fonction mesurable bornée, d’une fonction bornée intégrable au
sens de Riemann ou d’une fonction monotone 2.

§ 8. SERIE TRIGONOMETRIQUE ET SERIE CONJUGUEE.

1. A toute série trigonométrique

D [ee]
a Q) .
A, + EA” — 72-0 + Z (a, cos nx 4 b, sin nx)
1 1

L Toeplitz 1; voir aussi Fischer 3. — 2 Caratheodory und Fejér; Caratheodory 3, 4.
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correspond une série conjuguée

© ' « o .
b _ .
B, + EB" :-‘50 + z(bncos nx — a, sin nx) ,
1 ' 1 B

ou b, est une constante arbitraire. Ces deux séries ne sont autre
~chose que la partie réelle et la partie imaginaire de la série de
puissances

F(z) = %o °+2(a — th, )z
1 .

sur la circonférence z = . :
On sait depuis les travaux de PriNGSHEIM ! et de Fesgr qu’il

existe des séries de puissances F(z) = 2 Cn 2", de rayon de con-

‘ 0
vergence 1, telles que f(z) = lim F(re*®) soit continue sur tout

r=-1-0

le oerole de convergence |z| =1 et pour lesquelles pourtant
2cp,e"” a une infinité de points de divergence sur ohaque arc
de la circonférence de ce cercle. Il ‘existe aussi des séries de
puissances F(z) pour lesquelles f(z) est continue sur |z| =
et pour lesquelles cependant 3¢, ¢ converge, mais ne converge
uniformément sur aucun arc de cette circonférence; de méme
il y en a qui convergent uniformément sur cette olroonference,
mais non absolument 2. ,

Lorsque la série F(z) réalise la transformation conforme du
cercle |z| < 1 sur une aire simple du plan complexe, auquel cas .

zn,an—— ib, |2 converge, Pétude de la oonvergence de F(z)
sur le cercle |z| =1 condult a un resultat extremement sunple

di A M. Fesj£r3: La serle 2 — 1b,) e converge pour toutes

les valeurs de z pour lesquelles F(z) a. ‘une hmlte radlale o
(z = re®, r > 1 —0). Et cela, uniformément sur tout ensemble -

~sur lequel la limite est uniforme. |
2. Si la série ZA est une serle de Foumer, Ia serle con]uguée

1 Pringsheim, Fejér. — 2 Neder 1, 2. — 8 Fejér 9; voir aussi Landau 2.
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SB, ne l'est pas nécessairement. Nous avons cependant déja
noté que si la génératrice de XA, est de carré intégrable, 2B,
est aussi la série de Fourler d’une fonction de carré intégrable.
Plus généralement, M. M. Riesz! a fait voir que si 2 A, est la
série de Fourier d’une fonction f telle que |f|?(p>1) est inté-
grable, 2B, est, elle aussi, la série de Fourier d’une fonction
conjuguée g telle que |g|? est intégrable. Ce théoréme résulte
du fait que la fonction conjuguée

t — &

dt (2%)

b, 1 ’
g(x) =5 -+ §7:‘/‘f(t» cot
0

existe presque partout lorsque f(x) est intégrable, & condition
de prendre comme valeur de I'intégrale la valeur principale de
Cauchy 2 et du fait que si |f|? (p > 1)) est intégrable, on a (en
supposant pour simplifier que a, = b, = 0)

27T 27
Slgdesy, [ de
0 0

M, ne dépendant que de p.
Si la fonction f(z) ~ EA” est continue et satisfait uniformeé-

1
ment & une condition de Lipschitz d’ordre «

| [l 4+ by — fle)) < k| R|*, k>0, a >0

la série conjuguée 2B, est aussi une fonction continue et satis-
fait & une condition de Lipschitz d’ordre « si o =1, et d’ordre
1 — ¢(e positif arbitrairement petit) si «=13.

@®
S1 la fonction f(z) ~ SA” est a variation bornée, la série
|

conjuguée 3B, converge en tout point ou la valeur principale
au sens de Cauchy de 'intégrale (24)

f[/'(x + 8 — flx —t)] cot%dt
0

existe, donc presque partout 4.

1 M. Riesz 8. — 2 Plessner. — 38 Fatou 1; Privaloff 3. — 4 Young 4.




48 o M. PLANCHEREI
W. H Younc a donné des critéres généraux de convergence '
de la série con]uguee analogues 4 ceux donnes au § 3L

i la série E (a,l —1b,) e"* est partout convergente et converge

vers z6éro dans un intervalle arbitrairement petit, on a a, = b, = 0,
n=1,2,3,..2 Ce résultat a été généralisé par M. _F. Riesz3.
- M. PrivALOFF % a énoncé quelques théorémes sur les séries
conjuguées: Si f2 est intégrable et si la série de Fourier 3 A, de f
converge sur un ensemble I de mesure positive, la série
conjuguée 3B, converge presque partout sur JNL. Si une série
trigonométrique 3 A, converge sur un ensemble J1U de mesure
positive, pour que la série conjuguée 3B, -converge presque
partout sur JIC il faut et il suffit qu’elle soit sommable par une
certaine moyenne de Cesaro ou par le procédé de Riemann
presque partout sur IN. ~

3. M. Feskr 5 a étudié la relation qui existe entre les singula-
rités de Lebesgue et de Du Bois-Reymond de deux séries trigono-
métriques conjuguées. I1 a montré que si A, est uniformément
convergente dans (0,2r) la différence des sommes partielles
sn(z) et s () relatives & la série conJuguee 2B, converge vers
zéro et que par conséquent 3B, converge au sens ordinaire du
mot en tous les points out elle converge (C, 1) — donc presque
partout — et qu’elle converge uniformément sur tout ensemble
ou elle converge uniformément (C, 1). Il a montré encore que
si la série F(z) converge pour |z| < 1 et si la fonction F (z) est
continue pour |z| <1, de la convergence uniforme de 3 A, résulte
celle de 3B, et réciproquement. Si F (z) converge pour |z]| < 1
et est continue pour |z|< 1, si de plus A, converge partout,
cette série présente necessau'ement la smgularlte de Lebesgue
la ou =B, presente celle de Du Bois- Reymond

§ 9. LTUNICITE DU DEVELOPPEMENT TRIGONOMETRIQUE.

1. Un double probléme se pose: I. Sachant qu’une série tri-
- gonométrique A, ,converg\e vers zéro sur un ensemble E de

. 1'W. H. Young 24, — 2Fa’cou 1 — 3F und M Riesz — 4Privaloﬁ’1 — & Fe,]ér
"6, 11 voir aussi-W. H* Young 4 R , ‘
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points de l'intervalle (0, 2r) et ne supposant rien d’avance sur
la convergence de la série dans ’ensemble complémentaire CE,
quelles propriétés doit avoir I'ensemble E pour qu’on puisse
affirmer que a, = b, = 0 (n=0,1, 2, ...). (probléme de Cantor).
I1. Sachant qu'une série trigonométrique converge sur un
ensemble & de points de I'intervalle (0, 2r) vers une fonction
f(x) et ne supposant rien d’avance sur la convergence de la série
dans ’ensemble complémentaire &, quelles propriétés doivent
avoir & et f(x) pour que la série trigonométrique soit une série
de Fourier (probléme de Du Bois-Reymond). 11 est clair que
pour pouvoir conclure, il est nécessaire de supposer que l'en-
semble Il ou & est mesurable et que son complémentaire est de
mesure nulle. Mais cette condition n’est pas suffisante.

2. G.CanTor! a déja montré que si CK est réductible, a,=b,=0,
n=20,1,2 ... M. F. BERNSTEIN 2 a montré ensuite que la méme
conclusion subsiste pourvu que CE ne contienne pas de sous-
ensemble parfait; c’est, en particulier, le cas si CE est dénom-
brable. M. Rajcuman 2 et M'e BAry ¢ ont démontré que si CE
est un ensemble parfait d’un type spécial, on peut encore affirmer
que a, = b, = 0. Mais ce résultat n’est pas vrai pour tous les en-
sembles parfaits de mesure nulle; c’est ce que montre M. MEx-
CHOFF ® en construisant une série trigonométrique a coefficients
non nuls (mais convergeant vers zéro), qui converge vers zéro
sur le complémentaire d’'un ensemble parfait de mesure nulle,
la convergence vers zéro étant de plus uniforme dans tout
intervalle fermé contenu dans ce complémentaire.

3. Le probléeme de Du Bois-Reymond n’a pas recu lui non plus
de solution complete. Un critére général pour décider si une
série trigonométrique est une série de FFourier est le suivant é:

Pour que la série XA, soit une série de Fourier, il faut et il
X

suffit que la série 2 A, dz converge dans tout I'intervalle (0,2x)
0

vers une fonction F (x) qui soit I'intégrale définie d’une fonction

1 Cantor 2. — 2 F. Bernstein 1; voir aussi W. I, Young 1. — 3 Rajchman 2, 3. —
4 Bary. — 5 Menchoff 1. — % W. H. Young 6, 16. Pour des conditions nécessaires

et suffisantes pour qu'une série trigonométrique soit la série de Fourier d’une fonc-
tion bornée ou d'une fonction de puissance p-iéme (p > 1) intégrable, voir W. H.
Young 16, Steinhaus 7.

L’Enscignement mathém., 24¢ année; 1924 et 1925, 4
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intégrable f(x) -
0 .
f(x) est alors la génératrice de la série.
M. LeBEsGUE ' a démontré que si 2A, converge sur un en-
" semble &, de complémentaire C& réductible, vers une fonction
f(x) bornée sur &, S A, est une série de Fourier dont f(x) est la

génératrice (f étant définie arbitrairement sur C&). MM. W. H.
Young 2 et Ch. J. de la VAaLLEE-Poussin? ont fait voir ensuite

que pour pouvoir conclure que EA,, est une série de Fourier:
| | - ;
il suffit de supposer que ®(xr) = lim sup. ZA

grable dans (0, 2r) et soit finie dans tout l’mtervalle (0, 2x) ou
s’ll y a des points d’infinitude de cette limite, que leur ensemble
soit dénombrable ou ne contienne pas de sous-ensemble parfait.

4. Les problémes de Cantor et de Du Bois-Reymond se posent
pour chaque procédé de sommation des séries trigonométriques.
Ils ont été étudiés pour le procédé de Cesaro 4.

soit inté-
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