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LE DÉVELOPPEMENT

DE LA THÉORIE DES SÉRIES TRIGONOMÉTRIQUES
DANS LE DERNIER QUART DE SIÈCLE1

PAR

M. Michel Plancherel (Zurich).

Les « Leçons sur la théorie des séries » de
M. H. Lebesgue 2 et les chapitres consacrés par M. E. W.
Hobson 3 à cette théorie dans sa « Theory of functions of a real
variable and the theory of Fourier series », ainsi que les articles
de Fr. Burckhardt4 dans YEncyclopädie der Wiss. (II
A 12), fixent l'état de nos connaissances sur les séries

trigonométriques au début du XXe siècle. Depuis lors, l'intérêt des

mathématiciens pour ces séries n'a pas diminué et les progrès
réalisés me paraissent assez importants pour que j'essaie de

vous présenter un tableau de l'état actuel de nos connaissances
sur ce sujet5.

Pour abréger mon exposé, je laisserai de côté la théorie des
formules intégrales de Fourier, celle des séries trigonométriques
de plusieurs variables, celle des séries trigonométriques non
harmoniques ainsi que les recherches sur la meilleure approximation

des fonctions d'une variable réelle ou complexe par des

polynômes trigonométriques. Ces dernières recherches ont été
exposées à notre Société par M. de la Vallée-Poussin en 1918
et je ne puis mieux faire que vous renvoyer à sa conférence 6 et
a son livre: Sur Vapproximationdes fonctions d'une variable
reelle ou complexe par des suites finies de polynômes 7.

1 Rapport présenté à la réunion de la Société mathématique suisse, tenue à Lugano,
le 22 avril 1924.

2II. Lebesgue, 5. (La bibliographie se trouve rassemblée à la fin du rapport). —n Ilobson, 1. •— 4 irr> Burckhardt. — 5 Sur le même sujet vient de paraître
(septembre 1924) dans YEncyklopsedie der math. Wiss. (II G 10) un article de E. Hilb et
.M. Riesz: Neuere Untersuchungen über trigonometrische Reihen. — 6 Ch. J. delà Vallée-
Roussin, 6. 7 Ch. J. de la Vallée-Poussin, 7.
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Ainsi délimité mon sujet est encore très étendu et je devrai
me borner aux points essentiels. Les progrès les plus importants
de la théorie des séries trigonométriques sont dus au développement

considérable de la théorie des fonctions de variables réelles ;

je chercherai à vous montrer qu'ils sont dus plus particulièrement

à l'introduction de l'intégrale de Lebesgue et des méthodes
de la théorie des séries divergentes, à l'étude des propriétés de

la suite des constantes de Fourier et à celle de certaines classes

de séries trigonométriques qui, sans être des séries de Fourier,
s'en rapprochent par leurs propriétés essentielles.

§ 1. Définitions.

1. Nous appellerons série trigonométrique toute série de la
forme

0© 00

-y +2 (<l" 008 nx + sin 2A" •

n — 1 0

Nous nous bornerons, en général, à supposer que les coefficients

an, bnde la série sont réels ainsi que la variable en vertu de la
périodicité de cos nx, sin nx, nous pourrons nous borner à faire
varier x dans un intervalle de longueur In.

2. Une classe particulière de séries trigonométriques, spécialement

importante, est celle des séries de Fourier. désignant
une fonction réelle, périodique de période 2ît, intégrable au sens
de Lebesgue dans l'intervalle d'une période, formons les
constantes 1

2 k 2jr
1 y / 1 /» cos

an — I f(x)dx— — l fix) nxdx z=z 1, 2, 3, (2)0 n J bn tzJsin > 'v

o o

Ce sont les constantes de Fourier ou les coefficients de Fourier
de f(x).La série trigonométrique correspondante est appelée —

i La notion de série de Fourier dépend donc de la notion d'intégrale. Dans tout ce
qui suit, nous nous servirons de la notion d'intégrale due «à Lebesgue. Si l'on emploie
une notion d'intégrale plus étendue, par exemple celle de Harnaok-Young ou celle de
Denjoy, on peut former les constantes (2) pour des fonctions qui n'ont pas de série
de Fourier. La série trigonométrique correspondante est dite quelquefois une série de
Fourier généralisée. Nous laisserons de côté ces séries. "
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qu'elle converge ou non — la sérde Fourier de f(x). f(x) est

la génératrice de cette série et nous exprimons la dépendance

de f(x)et de la suite de ses constantes de Fourier par le symbole

d'équivalence 1

oo

/•(*) ~ f + [an cos nx-f- bfisinnx) (3)

n—l

L'introduction de ce symbole est légitimée par le fait que deux
fonctions /(#), g(x) qui ont même suite de constantes de Fourier,
donc même série de Fourier, sont telles que

X X

ffdx fgdx (4)

0 0

et réciproquement. On a donc f(x) g(x) presque partout,
c'est-à-dire sauf éventuellement aux points d'un ensemble de

mesure nulle 2. En général il n'est pas permis de remplacer le

symbole d'équivalence par le symbole d'égalité, le second
membre de (3) pouvant diverger ou pouvant converger vers une
valeur différente de f(x). Notons, par contre, que les équivalences
peuvent s'additioner entre elles ou se multiplier par des
constantes comme des égalités et que l'intégration terme à terme
de l'équivalence (3) conduit à une égalité

.t oo ^
j*fdx x -f- J*[ancosnx -f- bn sin nx) dx (5)

0 // =1 0

dans laquelle la série second membre est uniformément convergente

3. Nous rencontrerons au § 7 quelques théorèmes sur la
multiplication des équivalences.

§ 2. Convergence des séries trigonométriques
GÉNÉRALES.

L G. Cantor 4 a montré que la série trigonométrique (1) ne
peut converger pour toute valeur de x que si an -»>0, ba-+ 0 lors-

1 Ilurwitz, 2. — 2 Lebesgue 5, p. 91. — 3 Lebesgue 5, p. 102. — * G. Cantor 1.
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V

' *

que n*ooPlus généralement, cette condition est encore néces-
QO

saire pour que^A» converge sur un ensemble de points de
o

mesure positive\ Mais elle est loiji d'être suffisante. On peut,
avec M. Steinhaus 2, construire une série trigonométrique dont
les coefficients tendent vers zéro et qui, cependant, diverge
partout. Le même mathématicien a donné une série
trigonométrique qui converge dans un intervalle et qui diverge dans

un autre intervalle 3. Les phénomènes de convergence et de

divergence les plus divers peuvent donc se présenter et M.
Mazurkiewicz a même montré que pour tout procédé « toeplit-
zien »4 de sommation des séries trigonométriques, il est possible
de construire une série dont les coefficients tendent vers zéro
et qui cependant n'est pas sommable, presque partout, par ce

procédé 5.

2. Nous ne connaissons presque rien sur la structure de
l'ensemble des points de convergence ou de divergence d'une série

trigonométrique. On voit bien que l'ensemble des points de

convergence dans un intervalle de périodicité ne peut pas être
entièrement arbitraire, car l'ensemble des ensembles de points
de l'intervalle (0, 2v:)aune puissance supérieure à celle de
l'ensemble des suites possibles de constantes bn. Si nous ajoutons
à ce résultat négatif le fait établi par M. Neder6, qu'étant donné
arbitrairement un nombre 7n(0<!m^27r), il existe des séries

trigonométriques qui, dans un intervalle de périodicité, divergent
sur un ensemble de mesure m, nous aurons dit tout ce que l'on
sait de général sur la question.

3. Une série trigonométrique peut converger partout et ne

converger uniformément dans aucun intervalle. On trouvera
dans la thèse de M. Neder 7 une étude approfondie des questions
qui se posent à ce sujet.

4. Une série trigonométrique, même partout convergente,
n'est pas, en général, absolument convergente. MM. Lusin 8,

Denjoy 9 et S. Bernstein 10 ont obtenu sur la convergence
absolue, quelques résultats intéressants retrouvés et simplifiés

*
"

i Lebesgue 5, p. 110. 2 Steinhaus 1. —- 3 Steinhaus 5. Voir aussi. Lusin 1. ~* Toeplitz 2. 5 Mazurkiewicz. — 6 Neder 1. —7 Neder i. -—s Lusin 2. — 9 Denjoy 1.

5. Bernstein.
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dans leur démonstration par M. Fatou1. Si la série

converge absolument au point x0,la convergence ou la divergence
de la série au point £0-£, symétrique du point arbitraire
relativement à x0,est de même nature qu'au point #0+|. De

là résulte que l'ensemble des points de convergence absolue est

symétrique par rapport à chacun de ses points* S'il n'a qu'un
nombre fini de points et si on les représente (mod. 2rr) sur le

cercle de rayon 1, ils seront disposés suivant les sommets d'un
polygone régulier. S'il y a une infinité de points de convergence
absolue, leur ensemble est ou de mesure nulle ou de mesure 2n.

Dans ce dernier cas, 2(| an| + j bn|)converge et la série trigono-
métrique converge absolument partout. Donc, si 2(| a,; | + | |)

diverge, l'ensemble des points de convergence absolue est de

mesure nulle. Plus généralement, si une série trigonométrique a

une infinité de points de convergence absolue, l'ensemble des

points de l'intervalle (0, 2n) ayant une propriété de convergence ou
de divergence déterminée est de mesure nulle ou de mesure 2tt.

5. Lorsque les suites art, bntendent vers zéro et sont telles

que l'une des séries de différences 2A*[(—1 )nan] ou
lùakbn, 2A*[(— i)"bn]est absolument convergente, on sait
que les séries 2afloosnx1 2busiïinx convergent uniformément
dans tout intervalle ne contenant aucune valeur congrue à

(p entier)2. En général, cette convergence n'est pas uni-

l'orme dans l'intervalle ^ai> exemP^e>

bn A bn+\, la condition nbtl 0 est nécessaire et suffisante pour
que la série 2 bn sin nx converge uniformément dans tout intervalle

3.

3. La convergence des séries de Fourier.

1. Aux critères connus de convergence des séries de Fourier
dus à Lejeune-Dirichlet, Jordan, Lipschitz, Dini et Le-
besgue 4, M. de la Vallée-Poussin a ajouté le suivant5:

1 Fatou 3. — 2 Lebesgue 5, p. 44. Voir aussi W. H. Young 18. — 3 J. W. Chaundy
and A. E. Jolliffe. —• * Pour ces critères voir Lebesgue 5, p. 64-73. — 5 ce. J. de la
Vallée Poussin 3.
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Si la fonction f(x)esttelle que

n "

p(u) Y^f[l(x + u) + f(x~u)]du
0

est à variation bornée quand u-+0, la série de Fourier de

converge vers F( + 0) au point
Ce critère contient celui de Jordan comme cas particulier.
M. W. H. Young1 a donné un autre critère qui n'est pas-

contenu dans celui de M. de la Vallée-Poussin:
Si f(x)estsimplement discontinue au point x — c'est-à-dire

si f(x4-0) et f(x — 0) existent — et si dans le voisinage de
ce point, on a

j[f(x + h) + f(x — h)] =z
0

g(t) étant une fonction bornée ou plus généralement telle que
1

h

r~f\g(t)\dt soit bornée pour h-*0,la série de Fourier de
h

0

l
converge au point xvers ^[/(# + 0) + — 0)].

Dans un autre travail, M. W. H. Young 2 fait voir que dans
l'énoncé précédent, la condition relative à peut être
remplacée par celle que, pour une valeur ?>0,

h
' i f \d[hUf(x+ k) + — A))] |

«

soit bornée pour
M.G. H. Hardy 3 a étudié et comparé entre eux les différents

critères connus de convergence des séries de Fourier.
2. Riemann a déjà démontré que les coefficients d'une série

de Fourier (d'une fonction bornée intégrable au sens de

Riemann) tendent vers zéro et Leöesgue a montré que la propriété
subsiste lorsque la fonction, bornée ou non, n'est pas intégrable

1 W. H. Young 21% — 2 H. Young 24. On pourra consulter aussi W H. Young
26, 27. — 8 Hardy 2. \
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au sens de Riemann mais est intégrable à son sens. Pour toute
fonction f(x) intégrable au sens de Lebesgue on a donc

lim a z=z lim b 0 1.

n-* oo n-*oo
Cette propriété ne subsiste plus nécessairement si f(x) est non
bornée, intégrable au sens de Riemann ou de Harnack-Young
ou de Denjoy, sans l'être au sens de Lebesgue. Si l'on remarque
que la condition an-+0, bn -* 0 est une condition nécessaire de

convergence de la série de Fourier et qu'il existe des fonctions
intégrables au sens de Lebesgue, mais non au sens de Riemannr
et dont la série de Fourier converge partout vers la fonction 2y

on se rend compte de l'importance qu'il y a à mettre la notion
d'intégrale de Lebesgue à la base de la théorie des séries de
Fourier.

3. Une propriété importante des séries de Fourier, déjà
remarquée par Riemann pour la classe des fonctions bornées
intégrables à son sens et étendue ensuite par M. Lebesgue,
réside dans le fait que la convergence ou la divergence de la
série de Fourier en un point x ne dépend que des valeurs de la
génératrice dans l'intervalle arbitrairement petit {x-s, rr + e)3.
Nous exprimerons ce fait en disant que la convergence d'une
série de Fourier en un point est une propriété locale de sa génératrice.

Du Bois-Reymond a établi le premier qu'il existe des fonctions
continues dont la série de Fourier diverge4. M. Fejér en a donné
plusieurs exemples simples5. En voici un6:

La fonction périodique, de période 2rr, définie dans 0<#<7r
par ~

1

et dans (—7rj 0) par la condition de parité

/"(— x) ~ f(x) — - ^ .x- <: o

Hf'ymondS^Ue b'/p' ^oT 2 Lebcsgue 5, p. 68. — 3 Lebesgue 5, p. 60. — 4 Du Bois-ntymond. — s pejer 3, 4, 5. — 6 Fejér 4.
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est partout continue. Si on la développe en série de Fourier
(de cosinus, puisqu'elle est paire), la série de Fourier de cosinus

diverge au point de continuité x 0.
Nous dirons qu'une fonction présente la singularité de Du

Bois-Reymond en un point, lorsqu'elle est continue en ce point
et que pourtant sa série de Fourier y diverge.

L'existence de fonctions possédant la singularité de Du Bois-
Reymond est liée étroitement à l'ordre de grandeur des
constantes de Lebesgue

Pn
1 fiI sin (2 l)tu sin

dt (6)

Soit JR l'ensemble des fonctions périodiques, de période
intégrables et bornées, telles que | f(x) J <[1. Soit la rc-ième

somme partielle de la série de Fourier de f(x)

n 7r

*
1 Csin(2 -j- 1) _

'n(*> =2Av sin, fi* +2Vdt
V— o 0

On a donc

K(*).l ^
1 fiI sin (2 -f- 1)

sin t
dt Pu -

En prenant
sin (2/i 4- I

f{x + 21) sgn sin t

on voit que £„(#) pa. paest donc le maximum de | $„(#) | au
point Xj dans le champ fonctionnel JR. L'existence de fonctions
continues dont la série de Fourier diverge tient essentiellement,
comme l'a montré M. Lebesgue 1 au fait que lim oo ; c'est,

QO
1

d'ailleurs, une conséquence de théorèmes généraux sur les

intégrales singulières que MM. Lebesgue2, Haar3 et Hahn4 ont
étudiées d'une manière approfondie. est une fonction croissante

de net sgn (à vpn)(— l)v""l(v 1, 2, 3, ...)5.
La valeur asymptotique de pnaété étudiée par plusieurs

i Lebesgue 5, p. 86-87. — 2 Lebesgue 6, 3 Haar 1. — * Halm 1. — « Szegö.
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auteurs x. On a

71 111,00 + V + T + -f
21 VTU 1 16 Oj 1 3 5 2v(2w -J- 1) — 1

Vtg2n + 1 + 2n + 1 — 1?4v2 — 1 ' '
V =1 V=1

k

log (2n -f- 1) -f- a0 + ~7>4 "4" ^U-J-1 ' f •••)r8l«T,T,T^|& + irX..H1
Les oLysontdes constantes et le reste RA+1 de la formule

asymptotique est tel que FU+i7i2yt+2 reste borné lorsque •+ co.
4. M. Lebesgûe a attiré l'attention sur une autre particularité:

la série de Fourier d'une fonction partout continue peut être

toujours convergente et pourtant ne pas converger uniformément

dans (0,2 tt) 2. M. Steinhaus a donné un exemple dans lequel
la convergence n'est uniforme dans aucun intervalle3. On dit
qu'une fonction continue dont la série de Fourier est partout
convergente, présente en un point la singularité de .Lebesgûe
lorsque sa série de Fourier ne converge pas uniformément dans
le voisinage de ce point. M. Neder4 a montré qu'étant donné

un nombre m(0< m 2 tt), il existe une fonction continue dont
la série de Fourier converge partout et pour laquelle cependant
l'ensemble des points de l'intervalle (0,2tt) où le degré de convergence

non uniforme de la série est infini a une mesure > m.
5. Un phénomène intéressant de convergence non uniforme,

qui porte le nom de phénomène de a été particulièrement
étudié5. Il concerne l'allure des sommes partielles sa(x) de la
série de Fourier d'une fonction, à variation bornée au voisinage
d'un point de discontinuité x aetconsiste dans le fait que
$„(#) a dans le voisinage du point a des maxima et minima
relatifs dont les limites pour n-*•oo sont extérieures à l'intervalle

(f(a -f- 0), f (a-— 0)). L'essentiel de ce phénomène peut s'étudier

sur la fonction définie dans (— tt, tt) par
TU

"2 '

f(x)

TU < X 0

0 x — 0

0 X TU

TU

H '

o X — -T- TU

1 Fejér 5, 8; G-ronwall 1, 5; Szegö. — 2 Lebesgûe 4; 5, p. 88. — 3 Steinhaus 3,
4 Neder 1. — 5 Bôcher 1, 2; Carslaw; G-ronwall 3; Jackson.
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et en dehors par périodicité. La série de Fourier de cette fonction
est

sin [2n—2 2 n — l

Il suffit d'étudier les sommes partielles dans l'intervalle
0 < x< 7t.Ona sn (x)>0 pour 0 < x < et le maximum absolu

7Z *

de sn (x) dans 0 < x<tt est atteint au point M„ croit

avec net
TV

lim M„ — dx =1,85 >£ (8)
71-* oo d X

6. Fejér 2 a montré comment on peut, à l'aide de la série de

Fourier, ou plus exactement, des constantes de Fourier d'une
fonction f(x)àvariation bornée, déterminer le -f- 0)
— f(x — 0). Il suffit de déterminer une des racines positives g de

l'équation

f^-dl 0 (9)
d t

t

pour conclure que

iim sfx±f(x±0)
n-* oo \ n J

d'où

f{x+ 0) — f(x— 0) ^ ^ • (10)

Il a montré encore que

n
''

Hm k\bk cos kx — aksin kx)— f(x + 0) — f(x — 0) (11)

*== 1

Lukacs 3 a trouvé une autre expression du saut; il a montre
que

n -

— \f\x+ 0) — f[x— 0)] lim z——^5 cos — sin (12)
% n~>00 &

'•*

sous la seule hypothèse que le premier membre existe.

i Ç^rsiaw. — 2 Fejér 10 ; Sidoii. — 3 Lukacs.
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27T

7. Si | f (x)(p> 1) est intégrable dans (0, 2jr), f \ s„ (x)
0

reste bornée pour n oo et

2îC

f \f — »„ I p dx —>- 0 1. (13)

Dans le cas particulier où p2, Hardy et Littlewood ont
montré 2 que

lim
K + (*. - *|2 + - + <«>,

o m,
/»-oo n + 1

en tout point où 5 =^[f(x + 0) +f(x — 0)] existe. Si dans (14)

on prend ^ f(x),la formule est vraie presque partout.
8. Riemann a déjà donné des conditions suffisantes pour que

la série de Fourier d'un produit f(x) 1 {x) converge en même temps

que la série de Fourier de f(x). Ces conditions ont été élargies

par M. Lebesgue 3 puis par M. Steinhaus qui montre que la série

de Fourier de flconvergeau point x de convergence de la série

de Fourier de fsi / est bornée et si est telle que
* + *

j—
soit intégrable par rapport à t dans tout intervalle 4.

9. M. Lusin'5 a indiqué une condition nécessaire et suffisante

pour que la série de Fourier d'une fonction de carré intégrable
converge presque partout. Mais cette condition n'est pas simple
et nous ignorons si la série de Fourier d'une fonction continue
ou d'une fonction de carré intégrable a nécessairement des points
de convergence et si leur ensemble est de mesure positive. On
sait que la série de Fourier d'une fonction partout continue
peut avoir une infinité partout dense de points de divergence
et que l'ensemble des points de divergence peut avoir la
puissance du continu 6. M. Kolmogoroff 7 a construit une fonction

1 M. Riesz 8. Dans le cas p 1 on ne peut pas affirmer que
271

f I f sn\dx0

Voir à ce sujet S. Banach et H. Steinhaus 1et Hahn 1. — 2 Hardy et Littlewood 2. —
3 Lebesgue 5, p. 117-119. — 4 Steinhaus 2. — 6 Lusin 4. — 6 Neder 1. Le raisonnement

de Du Bois-Reymond 1 pour établir l'existence d'un ensemble partout dense de
points de divergence n'est pas concluant. Voir à. ce propos Neder 5. — 7 Kolmogo-
ro it 1.
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mtëgvobAQ, de carré non intégrable, dont la série de Fourier
diverge presque partout. Il a montré que si est de carré
intégrable, les suites partielles sn (x) de la série de Fourier

convergent presque partout vers f(x) lorsque oo si

• Vhi >A.>in

k étant une constante1.
Après que MM. Fatou2, Jerosch et Weyl3, Weyl4 eurent

démontré certains résultats moins généraux, M. W. H. Young5

établit que si .2Anestune série de Fourier, — (e > 0) est une
nB

série de Fourier convergeant presque partout. M. Hardy6 a
réussi à faire voir que dans ce résultat peut être remplacé par
log n.Dans le cas spécial des fonctions de carré intégrable,.
MM. Kolmogoroff et Seliverstoff 7 ont montré que la
convergence de 2 (a* + &*) logn)l+ ^(d > 0) entraîne la convergence
« presque partout » de la série de Fourier et M. Menchoff 8

a montré que le même résultat a lieu si 2(| + | bn |2""s)>

(e > 0), converge.
10. On ne sait pas grand chose sur les propriétés que doit

avoir f(x) pour que sa série de Fourier soit absolument convergente.

M. S. Bernstein9 a cependant démontré que si f(x).est
à variation bornée et satisfait uniformément dans tout l'intervalle

1

(0,27i) à une condition de Lipschitz d'ordre a < y, sa série de

Fourier est absolument convergente; si a > il y a des fonctions

dont la série de Fourier n'est pas absolument convergente.

§ 4. La sommation des séries de Fourier par les moyennes
de Gesàro.

1. On peut toujours remonter d'une série de Fourier — c'est-
à-dire de la suite des constantes de Fourier — à la génératrice

i Kolmogoroff 2. — 2 Fatou 1. — 8 Jerosch et Weyl. — 4 Weyl. — ß W. H. Young
11. — 6 Hardy 1. — A. Kolmogoroff et Gr.Seliverstoff.— 8 Menchoff 3. — • S. Bernstein.

: - ;
:

'
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en intégrant terme à terme la série et prenant ensuite la dérivée

de la fonction somme. Mais ces opérations constituent un double

passage à la limite. Fejér1 a montré que l'on peut remonter plus

simplement de la suite des constantes de Fourier à la génératrice

à l'aide des moyennes arithmétiques s^(x) des sommes

partielles sn(x)
n

2Ay (15^

0

•r n +
+

+ *.+2 (« -
v=l

TT C ' ' (1)I\/ "i- Ö) 14.11 a fait voir que s), (x)convergevers - ^ en tout

point où cette expression existe, en particulier donc en tout
point de continuité de f(x) et que la convergence est uniforme
dans tout intervalle entièrement intérieur à un intervalle de

continuité de f(x).Plusgénéralement, scJ} (x) converge encore
vers /(x)si2

t

lim— Ç | f{x-j-2u) -f- f(x — 2 — 2 | du — 0
t-> o t J

o

Or, cette limite est nulle presque partout. Les moyennes
arithmétiques s(n(x)convergent donc presque partout vers f(x).

L'important résultat de Fejér a été le point de départ de toute
une série de recherches dont le caractère général est l'introduction

de la théorie de la sommabilité des séries divergentes dans
l'étude des séries de Fourier. Série trigonométrique et série de
puissances étant en étroite relation, puisque la première est la
partie réelle ou imaginaire d'une série de puissances sur un
cercle, il est naturel d'appliquer aux séries trigonométriques les
procédés de sommation employés dans l'étude des séries de
puissances.

F La méthode de sommation qui s'est montrée la plus féconde
est la méthode des moyennes arithmétiques de Cesàro 3. Soit

11aF111 F ••• F un F

1 Eejér 1. 2 Lebesgue 2, 6. — 3 Cesàro 1.
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une série quelconque, convergente ou non. Formons la série
de puissances

f[t)z=zW0 -f- W, t4"••• -f" *F

et supposons son rayon de convergence égal à 1. On sait, depuis
Abel, que si 2un converge et a pour somme s, lim/(£) s,

t -f 1—0

Mais on connaît de nombreux exemples où la limite considérée
de f(t) existe et où 2un diverge. Il est alors naturel de convenir
de regarder cette limite comme somme de la série divergente:
c'est le principe du procédé de sommation de Poisson sur lequel
nous reviendrons plus loin (§ 6). Notons simplement que la
formation de lim/(£) exige en réalité un double passage à la

*-1—0
limite à partir de la suite car la formation de / (t) en inclut
déjà un. Cesàro a montré comment, très souvent, on peut se

restreindre à un seul passage à la limite, et celà à l'aide du
théorème suivant1 :

Soient a0, %,..., a«,...; p0,plt...,p,n deux suites illimitées.
Soit pn>0, n0, 1, 2,

oo

Supposons que la série ^ pntnconvergepour < 1 et
n=0

oo
vv

diverge pour t1. Si lim — sexiste, alors antn converge
n-*«s Pn q*

pour \t\<1et
oo

tn2 a t'n
0

lim —
*- î—o °°_

tn
n2'

0

Nous appliquerons ce théorème au cas où

p0 + ptt + + Pntn + (1 - <r(1+3> (« > - 1)

00

aoat t+ ••• + an tn+ rr (1 — t) untn
0

i Cesàro 2.
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Par conséquent,

p -CL" +.8 +±L c"1'1 (i7)rm +1)F(S + 1) ~ " 1
-

et

«,,=2C-v'«v Sf (18,

-J=0

Le théorème de Cesàro montre donc: si

gfçj1)

i im 'V
/z-*oe C<^

existe, alors
oo

im "S? u tn
1—0 Ä«/

1

l—i

Ce résultat conduit à la définition suivante de la sommation
de Cesàro $ordre â, (à > — 1).

La série ^ un est dite sommable (C, $), et a pour somme s si
o

c(r?) ,l /ho: H

Jrj>) n n—j 1 ' ,l — v ~f" 0 ~~f~ L F ^ -f- 1

s» — (^7 """jMjr ~~ TT+Tjf(«"+''â"+ïj0
(19)

i- Mf, '' s a
n N o/ \ n -{- o — 1 / \ n -j- o —• v -{— L

v — o

converge vers 5 lorsque n •+ co.

La convergence ordinaire est identique à la sommabilité (C, 0),
Essentiel est le fait qu'une série sommable (C, t?0) est sommable
(C, §) vers la même somme lorsque à > <J0. La somme formelle
de deux séries sommables (C, 5) est encore sommable (C, $) vers
la somme des sommes (C, $) des deux séries. Le produit formel,
d'après la règle de Cauchy, de deux séries dont l'une est
sommable (C, S) et l'autre (C, $') est sommable (C, â + à' + 1) vers
le produit des deux sommes1.

La suite continue des ordres de sommation de Cesàro a l'avantage

de constituer une échelle de convergence. Car, pour toute

1 Cesàro 1, 2; Chapman 1, 2.

I,'Enseignement ma the m., 2V année; 192't et 1925.
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série, il existe un ordre 80(éventuellement <î0 — — 1 ou $0 éé)

tel que (si 80=?£ co) la série soit sommable (C, pour > $0 et
(si 80^ —1) ne soit pas' sommable (C, pour < <î0.

3. L'étude systématique de la sommation (C, des séries
de Fourier a conduit aux résultats suivants *.

La série de Fourier d'une fonction intégrable converge (G,
1

(<î> 0) vers 2" [/(^ + 0) + f(x—0)]en tout point où cette

expression existe2. Si f(x) est continue en chaque point d'un
intervalle a <, x<,b,laconvergence est uniforme dans cet
intervalle. Ceci n'a plus lieu, en général, si 0. Le résultat
primitif de Fejér est contenu dans lé précédent — 1).

Si
t ;

lim — f I f(x-{- f(x 2 —2' 0
o * J

o

la série converge (C, 5), (8> 0) 3. C'est pour — 1 le résultat de

Lebesgue énoncé plus haut. M. Hahn 4 a fait voir que ce résultât
ne subsiste plus, en général, si l'on remplace la condition précédente

par la même débarrassée du signe de valeur absolue sous

l'intégrale; il subsiste, par contre, si l'on remplace la sommation
(C, d)par la sommation (C, 1 + 5.

Si .y est un entier positif et si 8>y, la série de Fourier converge
(C, 8)vers la y-ième dérivée généralisée de la y-ième intégrale

OC 00

f ffdx dx6.
La lumière que ces théorèmes jettent sur la nature de la

convergence des séries de Fourier est encore plus grande lorsqu'on
introduit pour les sommes sWdesconstantes pWanalogues
aux constantes de Lebesgue pndéfinies Comme borne

supérieure de | (x)|dans le champ des fonctions / telles

que ] f(x)I1. p\?)estune fonction bornée de pour > 0 et
pour 8i> 1 on a pW 1. Les sommés partielles de la série
de Fourier d'une fonction bornée fsont donc bornées pour
8>"0 et lorsque 8^>i elles sont toujours comprises entre la borné
inférieure et la borne supérieure de On peut se demander

i Chapman 1, 2; Oronwall 4; Hardy 1; M. Riesz 1, 7 ; W. H. Young 3; Kogbetliantz
2. — 2 M. Riesz 1, 7; Chapman 2; Cronwall 4; W. H» Yoùng 3. — 8 Hardy 1. —
^ Hahn 2. — * W. H. Young 2, — 6 W. H. Young 3.
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ce qu'il advient du phénomène de Gibbs pour une sommation

d'ordre d < 1; la question a été traitée par H. Cramer1 qui
établit l'existence d'une valeur positive inférieure à 1, telle

que lorsque S < k le phénomène de Gibbs a lieu et que lorsque
S > k il n'a pas lieu.

4. La convergence ordinaire et a fortiori la convergence (C, <î)

{è> 0) d'une série de Fourier est une propriété locale. Ce n'est
plus le cas, en général, lorsque d<0. La convergence en un point
dépend alors non seulement du comportement de la fonction
dans le voisinage de ce point, mais de son comportement dans

tout l'intervalle (0, 2n). C'est une propriété non plus locale,
mais globale.

L'influence des points singuliers de la fonction sur les propriétés
de convergence de sa série de Fourier est mise en évidence

dans le résultat de Kogbetliantz2: Si f(x) est à variation bornée
dans les intervalles (0, £— e) et (£ + e, 2n) et si dans l'intervalle
(£ — e, £ + s)ellepeut se mettre sous la forme

co ix — na + ?(*)

y {x) étant à variation bornée dans (£ —• s, £ + g), une constante
et 0<a<l, la série de Fourier est sommable(C, $), —1 en

tout point x^£ vers ^ [f(x+ 0) + —- 0)]. Par contre, elle

n'est plus sommable (C, d)en ce point si d a — 1. Les moyennes
sjcO d'ordre 5 —1 ne sont pas bornées en n\ par contre,

celles d'ordre S a— 1 sont bornées en mais ne convergent
pas pour n oo. Il est d'autant plus remarquable que si la fonction

est à variation bornée dans tout l'intervalle (0, 2tr) la série

converge (C, partout vers ^[f{x + 0) +f(x — 0)] lorsque
y > — 13.

5. Hardy et Littlewood 4 se sont posé la question de trouver
les conditions nécessaires et suffisantes pour qu'une série de
d uurier soit sommable au point x par une sommation de Cesàro
d ordre suffisamment élevé. Ils sont arrivés au résultat suivant:

La condition nécessaire et suffisante pour que la série de Fou-
i ici d une fonction intégrable / (x) soit sommable par une moyenne

1 Cramer. — a Kogbetliantz. 3 W. H. Young 15. — 4 Hardy and Littlewood 3.
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de Gesàro en un point xestqu'il existe un entier tel que si
l'on pose

î(') /"(*+<) + f{X — t) — if(x)
'.y t - • ..."

?j(') jf,Tî(<)
0 0

on ait
lira yk(t) 0 » :

*-0

Ils ont montré en particulier que si est bornée dans un intervalle

contenant le point #, la série de Fourier est ou bien som-
mable au point xpour toute moyenne de Cesàro d'ordre <î>0 ou
bien n'est sommable par aucune. La condition nécessaire et
suffisante de sommabilité est dans ce cas : lim ^ (£) OV

0

§ 5. Les séries de Fourier restreintes.

1. En général la série obtenue par dérivation terme à terme
d'une série de Fourier diverge partout. Mais M. Fejér2 a

déjà établi que l'on peut encore, à l'aide des moyennes
arithmétiques, remonter de la série dérivée à la dérivée de la génératrice.

M. W. H. Young3 a montré que la série dérivée terme à

terme de la série de Fourier d'une fonction à variation bornée

converge presque partout (G, $),d>0, vers la dérivée de la fonction.

Plus généralèment, il a établi que 4:

a) la convergence (G, 1) de la première dérivée (formelle) d'une
série de Fourier (c'est-à-dire la* série obtenue par dérivation »

terme à terme) en un point est une propriété locale;
b) qu'il en est de même de la convergence (G, p)de la -ième

dérivée.

Il résulte de ces propositions que si, par exemple, est

continue et à variation bornée dans le voisinage d'un point, la
p-ième dérivée de la série de Fourier de converge (G, p) vers

—^ au point considéré.
dxp ' / r '

•
•

'

'• •

i Hardy and Llttlewood 3; M. Riesz 7. — 2 Fejér 1. — 8 W, H. Young 20,
4 W. H. Young 31. v •

' :. ;
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2. Ces résultats ont conduit M. Young à introduire sous le

nom de séries de Fourier restreintes de classe une classe de

séries trigonométriques qui sans être nécessairement des séries

de Fourier s'en rapprochent beaucoup par leurs propriétés et

qu'il caractérise par les deux propriétés suivantes:
L La série trigonométrique obtenue en intégrant p-fois

terme à terme la série donnée (on laisse de côté le terme constant)
est une série de Fourier dont nous désignerons par F(x) la
génératrice.

IL Dans un intervalle partiel (a, d'un intervalle de périodicité,

F(#) est l'intégrale p-upled'une fonction intégrable
dans (a, è). On suppose donc que dans (a, b)

La série trigonométrique donnée est alors appelée par
M. Young une série de Fourier de classe p restreinte à Vintervalle

(a, b) et f(x) la fonction associée à cette série dans l'intervalle
(a. b). La raison de cette dénomination est que dans (a, b) et

relativement à la sommation de Cesàro d'ordre p une telle série
a exactement les mêmes propriétés de convergence que la série
de Fourier d'une fonction intégrable dans (0,27r) et coïncidant
avec f(x)dans (a, b) h

o. Pour pouvoir donner pour une série de Fourier restreinte de
classe p des critères de convergence relatifs à une sommation
(ioidre q<C^p, il est nécessaire d'ajouter une hypothèse
supplémentaire relative non plus seulement à l'intervalle b) mais
à tout l'intervalle (0,2t:). Comme hypothèse supplémentaire,
Al. \\. H. Young ajoute la condition

Les conditions de convergence (C, p — 1) dans (a, b) d'une telle
sene sont alors les mêmes que celles de la convergence (C, p 1)delà série de Fourier d'une fonction intégrable dans (0,2*) et
coïncidant avec f(x) dans (a, b)2.

X

F !.r) — Ç Ç fdx...f[x) —
1

(/>)
1

1 W. H. Young 31. — 2 w> H> Young 23? 33
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Eu particulier donc, si p=*= 1, nous voyons qu'une série de

Fourier restreinte de classe 1, telle que - 0, 0 jouit
dans l'intervalle do restriction et relativement à la convergence
ordinaire de toutes les propriétés d'une série de Fourier.

M. Young a fait de ces séries une application importante à
l'étude de la convergence des séries de polynômes de Legendre 1,

des séries de fonctions de Bessel2 et de certaines séries trigono-
métriques non harmoniques3. Une autre application intéressante

4 généralise un théorème de Fatou 5 affirmant qu'une
série de puissances 2anzn,telleque + 0, de rayon de

convergence 1, converge sur le cercle de convergence en tout
point de régularité de la fonction analytique engendrée par la
série. Ce théorème de Fatou a été dans sa démonstration
notablement simplifié par M. M. Riesz 6 qui a montré de plus que
la convergence est uniforme sur un arc de régularité et qui a,

en remplaçant la condition an+0 par la condition - 0

0 -^0), montré que le théorème subsiste, à condition de

remplacer la convergence ordinaire par la convergence '(C, J). Si

^ < M, les sommes partielles de la série restent bornées

(C, d)aux points de régularité.

'

§ 6. Autres procédés de sommation.

1. Il est quelquefois utile d'introduire d'autres procédés de

sommation équivalents au procédé de Cesàro. C'est ainsi qu'on
peut, pour les indices àpositifs entiers, définir avec Holder7 un
procédé de sommation que MM. Knopp 8 et Schnee 9 ont
montré équivalent au procédé de sommation (G, Chapman

10, M. Riesz11 et W. H. Young12 ont étudié de tels procédés.
2. M. de la Vallée-Poussin 13 a donné un procédé nouveau

pour sommer une série 2 V il consiste à donner comme
0

'

'

'

• -

i W. H. Young 29, 30. — 8 W. H. Young 35. — 8 W. H, Young 34. — * W. H. Yoyng
32. — 5 Fatou i. — • M. Riesz 3, 5, 6. —7 Hölder. i-— 8 Knoppi, 2,3. ?-— d Scftüee;
voir aussi Landau 1» 2. — io Chapman 1. — '** M. Riesz 1,2; vöiraussi Hardy and Riesz
1. — 12 W. H. Young 3. — « Vallée-Poussin 2.
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somme à la série la limite de

n

y -„ (20)
« — 0 ^ {n+ 1)+ 2) (h + k)

k= 1

Ce procédé est plus puissant que celui de Cesàro d'ordre

quelconque. On peut en effet montrer1 que toute série sommable

(C, â) est sommable (V. P), c'est-à-dire par le procédé de M. de la
Vallée-Poussin; mais que, par contre, il existe des séries som-
mables (V. P) qui ne sont sommables par aucune moyenne
de Cesàro.

Si l'on somme une série de Fourier par le procédé (V. P.) on
voit que la série a pour somme (V. P.) l'expression

t

Km i
o

f\f(x ~f~ 0 H~ f(x —

en tout point où cette limite existe, donc presque partout et
que si, au point x, fpossède une dérivée généralisée d'ordre Zc,

la série obtenue en dérivant p fois terme à terme la série de
Fourier de / converge (V. P.) vers cette dérivée généralisée.
Pour toute fonction intégrable

•27T

lim Ç | f\x)— yn (x) | dix — 0
n-* co a

0

Vn désignant la n-ième somme partielle (V. P.) de la série de
Fourier de /.

1 désignant une constante, le procédé de sommation où l'on
remplace Ynpar

n

y1 - „ N? »1« - 1) [n — / +
(n+ 2X -f- 1) (/i -j_ 2X + 2) (/z —f— 2X —j— /• ^

k~ 1

'st équivalent au procédé de M. de la Vallée-Poussin 2.

3. D'autres procédés de sommation interviennent dans cer-

1 Gronwall 6, 7; Moore, 2 Kogbetliantz 1.
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taines recherches; c'est le cas du p
Poisson, où l'on cherche la limite pour — 0 de la série

00
an

^ (aflcosnx•+• sin nx)r"

et de celui qui se présente dans la théorie propagation
la chaleur :

lim I

r-> 1—0
jja +. 2 cos "9 + bn sin n?)r"

J

Notons encore le procédé Riemann:

r F ao,X3 fsmnhy..Huni r "T ^ I—-,— I (ancosnx 4- »„sinnx I •
h+o+mi \nhJnJ

Ces divers procédés possèdent dans le cas des séries de Fourier
des propriétés analogues à celles que possède le procédé de M. de
la Vallée-Poussin 1.

§ 7. LA THÉORIE DES CONSTANTES DE FOURIER.

1. L'idée d'édifier à côté de la théorie de la convergence des

séries de Fourier une théorie, des suites des constantes de Fourier
semble avoir été formulée, pour la première fois d'une façon
nette par Hurwitz2 qui a montré que l'on peut additionner et

multiplier entre elles les équivalences des fonctions intégrables
bornées et qu'une équivalence intégrée terme à terme donne
lieu à une égalité. Le problème général de cette théorie des

constantes de Fourier est le suivant: De propriétés connues de

/(#), quelles conséquences conclure pour la suite de ses constantes
de Fourier et inversement.

En réalité on sait très peu de choses sur lès caractéristiques
d'une suite de constantes de Fourier. On sait que 0 et

que >, converge 3. 11 n'existé pas de fonction telle que

i Vallée-Poussin 2, Hahn 1 i — 2 Hurwitz 3. ^ » iëheâgnt 102,4244 •
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Un) <l(n + l), lim^(re) oo et pour laquelle lim anl{n)
Il-* co '>-* 00

lim bnï{n) Q ait lieu pour toute suite de constantes de Fourier 1.

n-* »
Mais ces propriétés sont loin d'être suffisantes pour caractériser

une suite de constantes de Fourier.
On sait encore que si une fonction / est à variation bornée,

ses coefficients de Fourier satisfont à des inégalités du type

M M
Ian \ <- ' IM<-> <21>

où M est une constante et que si elle est de plus continue et

périodique
na)t —0 nb}l — 0 2.

On sait encore que si / est continue et périodique une relation
nan + a, nbn + b ne peut avoir lieucque si a b 0 3.

Lorsque la fonction / continue périodique satisfait uniformément

à une condition de Lipschitz, ou possède des dérivées
jusqu'à un certain ordre, ou lorsqu'elle est analytique, les
inégalités (21) peuvent être remplacées par de plus précises.

Du fait qu'une suite donnée an, ba est une suite de constantes
de Fourier on ne peut pas conclure que si l'on intervertit dans
cette suite l'ordre d'une infinité de termes, la suite obtenue
est encore une suite de constantes de Fourier. Par exemple, si
l'on permute les an et les bfl de même indice entre eux, la nouvelle

suite n'est plus nécessairement une suite de constantes
de Fourier. Le rôle disymétrique des an et des bn est d'ailleurs
mis en évidence dans le fait que 2 ~ converge toujours pour

une série de Fourier, tandis que ne converge pas
nécessairement. Sous certaines conditions, M. W. H. Young a établi
que 4

an 1 /» 1rJ H*) '°g2rl _ eo-dx ;

1 -7T

* W.^H^Young 12~
2 Ri6SZ Neder 3 ; Steinhaus 8> Czillag. — s Steinhaus 8, 9. —
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or, l'intégrale du second membre diverge pour certaines fonctions
intégrables. De même, si dans la suite a,,, des constantes de
Fourier d'une fonction on remplace une infinité de termes par
zéro ou si l'on supprime certains termes en déplaçant l'indice
de ceux qui suivent, les suites obtenues par ces opérations ne
sont plus nécessairement dés suites de constantes de Fourier.
M. W. H. Young 1 a étudié certains cas où du fait que la suite

b

dm bnest une suite de constantes de Fourier, la suite -~
est encore une suite de constantes dé Fourier, <f(n) étant une
fonction positive croissante tendant vers l'infini. Il a étudié
aussi le cas où les sont les constantes de Fourier d'une fonction

ou les coefficients de la série dérivée d'une série de Fourier.
2. Les résultats les plus importants de la théorie des constantes

de Fourier sont contenus dans la formule de Parseval, dans
le théorème de Riesz-Fïscher et dans leurs généralisations. Ces

théorèmes se rapportent auî fonctions dont une puissance
p-ième (p>1) est intégrable.

La formule de Pàrseval2 énonce que si f(x) est de carré inté-
2 iz OD

grable, c'est-à-dire si / f2dx est finie, la série "^t + bty
0

converge et que
2 p* 1

if fdx te J + jg (< + b\) (22)

Une conséquence est que si g(x) est une seconde fonction de

carré intégrable ayant la suite an> comme suite de constantes
de Fourier, la série 2 (àn <x„+ bnßn)convergeet

2 "T '
•

A f fg dx+ jg K *,, + l>„ <23.

' 0 1

Le théorème de Riesz-Fischer 3 est relatif aux séries de fonctions
orthogonales. Dans le cas particulier des séries trigonométriques
il énonce que: Etant donnée une suite de constantes réelles

1 W. H. Young 7, 9, 10,11,13,15,16. — 2 Lebesgue 5, p. 100 ; voir aussi Vallée-
Poussin 1; Uurwitz 3, 4; EiSélier L 8 3B\ RléSfc îr a; E. Pisélier 2; W* Hi Young
and G. C. Young; Plancherel. ' ^ '
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&ni bn assujetties à la seule condition! -f- converge, il
existe une et, à une fonction d'intégrale nulle près, une seule
fonction f(x) ayant la suite donnée a„, bn comme suite de
constantes de Fourier. Cette fonction f(x) est de carré intégrable.

Ce théorème montre en particulier que si

oc

f(x) ~ y + (an cos nx -f- bn sin nx)
1

est de carré intégrable, la série conjuguée

00

2 bn cos nx— an sin nx)
1

est encore la série de Fourier d'une fonction de carré intégrable.
3. La généralisation donnée par M. W. H. Young 1 de ces

théorèmes a été complétée sur un point par M. Hausdorff 2.
Sans avoir le caractère simple du théorème de Riesz-Fischer
elle est aussi intéressante. Pour l'exprimer sous une forme
concise, notons

271

1

- 1
tk ~ — lhk) > f-k ~^iak + ibk)

^ ~~
2tuf lkX dx (l — V— l) * 0 ± 1 ± 2

o

Evidemment

fk

Notons encore

sr=(2141')'. sp 1 f\p dxy
et supposons

P>1 q>1 1 +i _ j
Alors:

P ''

I. Si p<^q et si la suite arbitraire de constantes ak, bk est telle

casM-lsuX&te I' n" PartiCÙUer POur rétude du
voir W. H. Young 7. 8. 15. — 2 Hausdorff

bre par une moyenne de Cesàro,
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que est fini, lès au,bksontles constantes de Fourier d'une
fonction /(#) telle que | f(x)|?soit intégrable. De plus

J < S

II.Si p<[qetsi la fonction arbitraire est telle que |

est intégrable, la série formée à l'aide des constantes dé

Fourier de / converge et
S < J

qp.Pour p q —2, on retrouve le théorème de Riesz-Fischer et
la formule de Parseval.

4. Si les fonctions /(#),g (#) sont telles que \S\q

^ H- i 1, p>0, q>0^ sont intégrables, la formule de

Parseval (23) subsiste *.

5. La formule (23) subsiste encore si / est intégrable et g à
variation bornée 2.

L

6. Il n'est pas possible de caractériser d'une manière simple
la suite des constantes de Fourier d'une fonction continue. On

peut se demander, par exemple, s'il existe un exposant a < 2 tel
que la série 2(\afl \a + | bn|a)converge pour toute fonction
continue. Mais la réponse est négative 3.

Il est intéressant de noter que si la suite des constantes a*, bn

est telle que 2(| an|a+ | bflja)converge pour un exposant a>2 la
série 2An peut ne pas être une série de Fourier, ni même une
série de Fourier généralisée, engendrée par une fonction
intégrable au sens de Harnack-Lebesgue. C'est, par exemple, le
cas des séries 4 -

2 ri~~acos {n2x)Src~~~a sin ^im
Titchmarsh 4 et Perron 6 donnent d'autres exemples, à

certains égards plus simples.
7. Des résultats très curieux ont été obtenus par M. Cara-

theodory7 sur les constantes de Fourier des fonctions positives.
00

'

v

Pour que la série de puissances 1 + 2 + ibn)zn converge

i M. Riesz 8. Young* S. •-?- 2 Young 8. r-8 Carleawm. —- * Hardy and Littlewood L
— » Titchmarsh 1. —- 6 Perron. — Caratheodory 1,
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pour | z | <1 et ait pour | z j <1 sa partie réelle positive, il
faut et il suffit que le point (av a2l..., an ; bn) de l'espace à

2 ndimensions appartienne au corps défini comme le plus

petit corps convexe contenant la courbe

x1 2 cos y,x2 -
Ji =: — 2 sill cp r2

2 cos 2© xn
2 cos n ©

— 2sin 2© 2 sin n ©

et cela quelque soit n.
M. Tœplitz1 a réussi à exprimer ce résultat sous forme

algébrique. En posant
2

a,+ ib1
an +

~ >2an—\ + lf)n—l

ae ib< a, ilx an—2 "t" Ü'n—2

an — U'n an—1 n—1
2

et en désignant par H;i la forme d'Hermite dont D„ est le

discriminant, son résultat énonce qu'une fonction continue périodique

de période 2n est 0 lorsque les coefficients bn de sa

série de Fourier sont tels que les formes Hl7 H„, ne
sont pas négatives.

Ces théorèmes sont en relation étroite avec le théorème de

Picard-Landau. Ils appartiennent plutôt au domaine de la théorie
des fonctions d'une variable complexe; c'est pourquoi nous
n'insisterons pas ici sur les développements et les recherches

qu'ils ont provoqués. Notons simplement qu'ils permettent de
donner des conditions nécessaires et suffisantes pour qu'une
suite de constantes soit la suite des constantes de Fourier d'une
fonction mesurable bornée, d'une fonction bornée intégrable au
sens de Riemann ou d'une fonction monotone 2.

§ 8. Série trigonométrique et série conjuguée,

1. A toute série trigonométrique
oo 00

Ao -f 2 A„ TT + 2 C0S UX l>n Sin

1 Toeplitz 1 ; voir aussi Fischer 3. — 2 Caratheodory und Fejér; Caratheodory 3, 4.
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correspond une série conjuguée

00 oc
b

+ (6" C0S nx~ an sin nx) '
1 1

où bQest une constante arbitraire. Ces deux séries ne sont autre
chose que la partie réelle et la partie imaginaire de la série de

puissances
co

F(«) g° ~ l''a + 2K -
1

sur la circonférence z — eix.

On sait depuis les travaux de Pringsheim 1 et de Fe jér qu'il
00

existe des séries de puissances F(z) ^ ,de rayon de con-
0

vergence 1, telles que f(x) limF(rc^) soit continue sur tout
r-f 1-0

le cercle de convergence \z\=1 et pour lesquelles pourtant
2cneinx a une infinité de points de divergence sur chaque arc
de la circonférence de ce cercle. Il existe aussi des séries de
puissances F (z)pourlesquelles est continue sur 1

et pour lesquelles cependant 2cneinxconverge,mais ne converge
uniformément sur aucun arc de cette circonférence; de même
il y en a qui convergent uniformément sur cette circonférence,
mais non absolument 2. *

Lorsque la série F(2) réalise la transformation conforme du
cercle | z | < 1 sur une aire simple du plan complexe, auquel cas

oo

ibn\2 converge, l'étude de la convergence de F (s)
l '

; - vr... ; ; : -

sur le cercle | z\1 conduit à un résultat extrêmement simple
oô

dû à M. Fejér3: La série ^ (an — converge pour toutes
i ' '

v -
les valeurs de xpourlesquelles F a une limite radiale
(z reix,r-1 — 0). Et celà, uniformément sur tout ensemble

sur lequel la limite est uniforme.
2. Si la série 2Anestune série de Fourier, la série conjuguée

1 Pringsheim, Fejér. — 2 Neder 1, 2. — 8 Fejér 9j voir aussi Lantjav 2.
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2Bu ne l'est pas nécessairement. Nous avons cependant déjà
noté que si la génératrice de IAnestde carré intégrable, 2Bn
est aussi la série de Fourier d'une fonction de carré intégrable.
Plus généralement, M. M. Riesz1 a fait voir que si lAn est la
série de Fourier d'une fonction / telle que |/j^(p>l) est
intégrable, 2Bnest, elle aussi, la série de Fourier d'une fonction
conjuguée g telle que \g\? est intégrable. Ce théorème résulte
du fait que la fonction conjuguée

-TC

r(x) j + fi'l cot*
2

X dt (24)
0

existe presque partout lorsque est intégrable, à condition
de prendre comme valeur de l'intégrale la valeur principale de
Cauchy 2 et du fait que si | f\p(p>1)) est intégrable, on a (en
supposant pour simplifier que a00)

27T 2TT

f\gf dx^Mpf\f\Pdx
0 0

Mp ne dépendant que de p.GO

Si la fonction f(x) fXJ Att est continue et satisfait uniformé-
i

ment à une condition de Lipschitz d'ordre a

I fix + h) fix) \<k\h\«,> 0 a > 0

la série conjuguée 2Bn est aussi une fonction continue et satisfait

à une condition de Lipschitz d'ordre a si a 5^1, et d'ordre
1 — s (spositif arbitrairement petit) si 1 3.

QO

Si la fonction f(x)^^^Anest à variation bornée, la série

conjuguée IB„ converge en tout point où la valeur principale
au sens de Cauchy de l'intégrale (24)

2.JC

J* [/(x"4- t)— f(.— £) ] cot —- dt

existe, donc presque partout 4.

1 M. Riesz 8. — 2 piessner. — s Fatou 1; Privaloff 3. — 4 Young 4.
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W. H. Young a donné des critères généraux de convergence
de la série conjuguée, analogues à ceux donnés au § 3 1.

oc — ': '

r f

Si la série ^ (a« — ibn)einxestpartout convergente et converge
î •

vers zéro dans un intervalle arbitrairement petit, on a btl 0,

n — 1, 2, 3, ...2. Ce résultat a été généralisé par M. F. Riesz3.
M. Privaloff 4 a énoncé quelques théorèmes sur les séries

conjuguées: Si /2 est intégrable et si la série de Fourier 2 de

converge sur un ensemble Jfl de mesure positive, la série

conjuguée 2B„ converge presque partout sur JTt. Si une série

trigonométrique 2A„ converge sur un ensemble JTt de mesure
positive, pour que la série conjuguée 2B„ converge presque
partout sur JTt il faut et il suffit qu'elle soit somiïiable par une
certaine moyenne de Cesàro ou par le procédé de Riemann

presque partout sur JH.
3. M. Fejér 5 a étudié la relation qui existe entre les singula-

h

rités de Lebesgue et de Du Bois-Reymond de deux séries trigôno-
métriques conjuguées. Il a montré que si est uniformément
convergente dans (0, 2tu) la différence des sommes partielles
sn(x) et relatives à la série conjuguée 2 converge vers
zéro et que par conséquent 2 Bnconvergeau sens ordinaire du
mot en tous les points où elle converge (C, 1) — donc presque
partout — et qu'elle converge uniformément sur tout ensemble
où elle converge uniformément (C, 1). Il a montré encore que
si la série F(z) converge pour \z | < 1 et si la fonction F est
continue pour | z\^1, de la convergence uniforme de 2A„ résulte
celle de 2Bn et réciproquement. Si F converge pour < 1

et est continue pour \z \^ 1, si de plus 2 converge partout,
cette série présente nécessjairement la singularité de Lebesgue
là où 2Bn présente celle de Du Bois-Reymond.

§ 9. L'unicité du développement trigonométrique.

1. Un double problème se pose: I. Sachant qu'une série

trigonométrique 2Anconvergevers zéro sur un ensemble E de

1 W. H. Young 24. — 2 Fatou 1, — » F. und M. Riesz. — *Privaloff 1 6 Fëjér
6, 11 ; voir aussi*W. H* Young 4. *
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points de l'intervalle (0, 2^) et ne supposant rien d'avance sur
la convergence de la série dans l'ensemble complémentaire CE,
quelles propriétés doit avoir l'ensemble E pour qu'on puisse
affirmer que an — bn 0 (n 0, 1, 2, (problème de Cantor).
IL Sachant qu'une série trigonométrique converge sur un
ensemble ë de points de l'intervalle (0, 2tt) vers une fonction
j(x) et ne supposant rien d'avance sur la convergence de la série
dans l'ensemble complémentaire Cë, quelles propriétés doivent
avoir ë et f (x) pour que la série trigonométrique soit une série
de Fourier (problème de Du Bois-Reymond). Il est clair que
pour pouvoir conclure, il est nécessaire de supposer que
l'ensemble E ou ë est mesurable et que son complémentaire est de

mesure nulle. Mais cette condition n'est pas suffisante.
2. G. Cantor1 a déjà montré que si CE est réductible, an=bn~0,

n 0, 1, 2, M. F. Bernstein 2 a montré ensuite que la même
conclusion subsiste pourvu que CE ne contienne pas de sous-
ensemble parfait; c'est, en particulier, le cas si CE est dénom-
brable. M. Rajchman 3 et Mlle Bary 4 ont démontré que si CE
est un ensemble parfait d'un type spécial, on peut encore affirmer
que an bn 0. Mais ce résultat n'est pas vrai pour tous les

ensembles parfaits de mesure nulle; c'est ce que montre M. Menth

off 5 en construisant une série trigonométrique à coefficients
non nuls (mais convergeant vers zéro), qui converge vers zéro

sur le complémentaire d'un ensemble parfait de mesure nulle,
la convergence vers zéro étant de plus uniforme dans tout
intervalle fermé contenu dans ce complémentaire.

3. Le problème de Du Bois-Reymond n'a pas reçu lui non plus
de solution complète. Un critère général pour décider si une
série trigonométrique est une série de Fourier est le suivant6:
Pour que la série 2An soit une série de Fourier, il faut et il

X

suffit que la série 2 fAndx converge dans tout l'intervalle (0,2t:)
0

vers une fonction F (x) qui soit l'intégrale définie d'une fonction

1 Cantor 2. — 2 F. Bernstein 1 ; voir aussi W. II, Young 1. — 3 Rajchman 2, 3. —
4 Bary. — 5 Menchofï 1. — 6 W. H. Young 6, 16. Pour des conditions nécessaires
et suffisantes pour qu'une série trigonométrique soit la série de Fourier d'une l'onction

bornée ou d'une fonction de puissance p-ième (p > 1) intégrable, voir W. II.
Young 16, Steinhaus 7.

L'Enseignement mathéni., 24e année; 11)24 et 1D2.">.
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intégrable f (x)
'

X

F (#} J*
o

/(#) est alors la génératrice de la série.
M. Lebesgue 1 a démontré que si 2A„ converge sur un

ensemble ê, de complémentaire CSréductible, vers une fonction
f(x)bornée sur 2A„ est une série de Fourier dont f(x) est la

génératrice (/ étant définie arbitrairement sur C<ê). MM. W. H.
Young 2 et Gh. J. de la Vallée-Poussin3 ont fait voir ensuite

oo

que pour pouvoir conclure que ^ Art est une série de Fourier
0

nv

il suffit de supposer que <!>(#) lim sup.
n oo

2a
0

soit

intégrable dans (0, 2tt) et soit finie dans tout l'intervalle (0, 2ît) ou
s'il y a des points d'infinitude de cette limite^ que leur ensemble
soit dénombrable ou ne contienne pas de sous-ensemble parfait.

4. Les problèmes de Gantor et de Du Bois-Reymond se posent
pour chaque procédé de sommation des séries trigonométriques.
Ils ont été étudiés pour le procédé de Cesàro 4.
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