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284 ' V. HLA VATY

k-iéme pro;ectlon Dy appartenant a D, pourvu que l’on fasse
correspondre a deux points a; et b; de D; les points ay et by sur.
Dy d’apres V,

Grice a cette methode, on peut facilement trouver le point
d’intersection d’une droite quelconque E et de l’espace A. On
“trouve, d’aprés la méthode que nous venons d’expliquer; une
~ droite D dans A telle que 'on a E; = D, et E, = D,. Les droites
E et D se rencontrent au point cherché (III, 3).

5. — Plan et espace. Deux espaces. Pour trouver 'intersection
de ces deux figures linéaires, on procéde d’aprés la méthode
précédente et on détermine ainsi le nombre nécessaire des points
communs a ces deux figures linéaires. ‘

6. — Constructions auzxtliatres pour résoudre les problemes -
non métriques dans A. On peut projeter 1’espace A d’un point o
quelconque (non situé dans A) sur un espace A’ contenant .
Grice a cette projection on parvient & la méthode élémentaire
de projection sur 7. Soit donc A = (a?c'c%) ’espace & projeter,
A’ = (*¢',%c'n) 'espace de projection et o sur iC le centre de -
projection. Chaque point a de A a a, = d;, si a’ désigne le point
projeté sur A’. Le point a’ se trouve sur P = (oa). Mais, parce
qu’il est aussi dans A’, le point d’intersection des rayons (a;%c,)
et Pr nous représente a,. Pour projeter un point quelconque a’
de A’ sur A, il faut trouver la droite A appartenant & a; dans
A (V, 3). L'intersection de cette droite avec P, = (o, @,) nous
donne a;. On approuve facilement le théoreme suivant: Le plan
d’tntersection des espaces A et (o) se projette en m.

- Pour résoudre uin probléme nanmétri_que dans A, on le projette
sur A’ et on y effectue la résolution. On fait ensuite projeter
la figure cherchée sur A, d’aprés la méthode ci-dessus exposée.

VI. — ORTHOGONALITE.

A

1. — Notes préliminaires. Soient A et A’ les droites impropres
de deux plans «, a’. Pour trouver les angles extrémes d’incli-
naison de ces deux plans, il faut trouver d’abord deux sécantes
B, B’ a A, A’ qui soient conjuguées - par rapport 4 la sphére
absolue. Ce sont les droites impropres de deux plans compléte-
~ ment orthegonaux f3 et ', demiparalléles et demiorthogonaux &

A




HYPERESPACE A QUATRE DIMENSIONS 285

a et o', Les droites (af), (a'B) et («f), {«'B’) déterminent les
angles cherchés. Si ces angles sont de la méme valeur, il y a
w! sécantes B, B’ et les angles obtenus & Paide des 001 plans

B, 8’ sont tous de la méme valeur. Or, en faisant A =1C et
A’ =10C, les %! sécantes mentionnées se réduisent aux rayons
projeta?ﬁs, quai rencontrent °C1C et 2C aux points %, 0c* ¢, 1c*
et 2c, 2c*, Les points % et O¢* ¢tant conjugués par rapport a la
sphere absolue, on les projette d'un point quelconque de m par
des rayons orthogonaux. On a aussi

C = ¢, = "¢ et

2. — Espace orthogonal « une droite. Tous les problémes de
Porthogonalité peuvent étre réduits au probleme de détermi-
nation de 'espace (de la droite) orthogonal (—e) & la droite
(& Pespace). L’essentiel dans ce probléme est de déterminer les
¢léments 1mpropres de la figure cherchée. Or, pour trouver
Pespace A orthogonal a la droite A, il suffit de considérer une
droite A" //A par un point ¢’ quelconque de 7. Désignons par
A’ lespace A’ = (rA’). A’ rencontre 1C et 2C aux points ¢ et ¢/,
e =2 (V, 2, A). - - -

Le plan 1mpropre de A est fixé par trois points. Nous en trou-
vons le point d’intersection (A2C) = 2¢. 2c est conjugué a %¢’ par
rapport a la sphere absolue. Cest le point impropre des droites
orthogonales & A’ (et pour cette raison aussi a A’). D’apres
VI, 1, les points %¢; et ?c, sont de méme conjugués par rapport
a la sphere absolue. On a done (2 ca) | (%ca).

Deux autres points impropres de 1’e%pace Ch(‘T’ChP sont situés
sur la droite impropre du plan «', orthogonal & A’ dans A’. On
les trouve par la méthode élémentaire de projection dans A’
L un d’eux, ¢, est le point impropre % de la trace T' du plan

. En résumé:

Le plan tmpropre de lespace A | A est fixé par trois points
Oc, 2¢, p. %c est le point tmpropre de la trace Ty, | Ay de Uespace
cherché, la projection Pc, est conjuguée par rapport & la sphére
absolue @ *c, (*ca) | (20 'a), et p est le point quelconque im-
propre du plan o' | A’ dans A’

3. — Droute orthogorale @ Uespace. (Nous conservons la nomen-
clature de P'article précédent.) 11 ne g’agit que de la position de
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la droite A. On obtient d’abord le point %¢’ par la construction
(3c, a) 1 (2c .)- On trouve ensuite le plan-“_commun o' de deux
espaces A et A’ = (2¢'n). Une droite A’ | «’ dans A’ nous pré-
sente le résultat cherché. On peut faciliter la construction, en
se servant du fait que Pon a A | Ty,

4. — Problémes spéciauz. Pour trouver le plan completement'
orthogonal 4 un plan donné, il suffit de trouver deux espaces,
orthogonaux a deux droites du plan donné. L’intersection de
ces deux espaces nous donne le résultat cherché. Comme celui-ci,
tous les autres. problémes spéciaux touchant ’orthogonalité de
deux figures linéaires peuvent étre résolus a I’aide de VI, 2, 3.
Il s’en suit que les problémes métriques trouvent leurs solutions
A Paide de la méthode ci-dessus exposée. Nous ne jugeons pas
- nécessaire de nous étendre sur le développement des solutions
spéciales. Le lecteur intéressé les trouve en abondance dans mon
article tchéque, publié en 1922 dans le « Casopis pro péstovani
matematiky a fysiky», T. LI

Remarquons encore que la méthode exposee est un cas spe(nal
de la méthode de projection de I’hyperespace linéaire a cing
dimensions sur un plan & V’aide de trois projections seulement,
que j’ai exposée dans le méme périodique tchéque en 1923,
T. LIIT 2

Prague, février 1925.

1« Promitani z primky na rovmu v prostoru ctyrrozmerném ’,
2 « Promitdni z roviny na rovinu prostoru pétirozmérného ».
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