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y — Espace.

L — Triangle impropre. On a trois points remarquables
°c, 1c,2c, clans chaque espace A. Ce sont les points d'intersections
(°CÄ), (*CA), (2CA). Ils déterminent le plan impropre de l'espace
A. °cest le point impropre de la trace T de A sur 71. On l'obtient,
en joignant deux traces x, x' de deux plans «, ä' de A (IV, 1).

Le point lc n'a pas sa c-ième projection (II, 2). Pour le trouver,
on cherche la droite d'intersection D des plans (lcT) et Sa

i-ième projection Di est sur T, parce que le plan (^T) passe par
ic (IV, 2, A). On trouve d'après IV, 4, A sa &-ième projection
dans au- Parce que la droite cherchée rencontre tt, les rayons
de rappels de ses points passent par (III, 2, B). C'est la
k-ièniQ projection du centre de projection pour la droite D.
Nous appelons °c1c2c triangle impropre de l'espace A.

2. — Positions exceptionnelles.— A. A contient tt. Alors les

projections iChet kC{se confondent. C'est donc la méthode
élémentaire de projection avec les centres à l'infini.

B. A contient *C. Dans ce cas, sa trace T* est sa ï-ième
projection. Spécialement pour i—2:

La deuxième projection de Vespace demiorthogonal à k est une
droite.

C. A contient 1C et 2C. Il est donc l'unique espace impropre
de l'hyperespace.

3. — Point et espace. Soit donné un point quelconque pi dans
tt. Le plan (*C p)etl'espace donné A se rencontrent suivant une
droite P qui passe par lc.pi est donc la Lième projection d'une
droite P de A, passant par ic. Or, il nous faut encore un de ses

points pour la connaître. Le plus facile est de déterminer le
point d'intersection p' de P et du plan (fecT), parce que sa
A-ième projection se trouve sur Le point d'intersection
de T12 et de (fe£i/?.) nous livre pk. Pfe (ickPk)-

Toutes les droites Pu sont parallèles.
4. — Droite et espace. Trouvons la k-ième projection Dh d'une

droite D de A, si est donnée. Il suffit de répéter deux fois la
construction de V, 3, pour deux points a et 6, sur D. Il s'ensuit
aussitôt que chaque droite de tt peut être considérée comme la



284 V. HLAVAT Y
1

ft-ième projection D& appartenant à Di, pourvu que l'on fasse

correspondre à deux points ai et de Di les points % et sur.
Dfc d'après V, 3.

Grâce à cette méthode, on peut facilement trouver le point
d'intersection d'une droite quelconque E et de l'espace A. On

trouve, d'après la méthode que nous venons d'expliquer, une
droite D dans A telle que l'on a Ex Dx et E2 D2. Les droites
E et D se rencontrent au point cherché (III, 3).

5. — Plan et espace.Deux espace.Pour trouver l'intersection
de ces deux figures linéaires, on procède d'après la méthode
précédente et on détermine ainsi le nombre nécessaire des points
communs à ces deux figures linéaires.

6. — Constructions auxiliaires pour résoudre les problèmes
non métriques dans A. On peut projeter l'espace A d'un point o

quelconque (non situé dans A) sur un espace A' contenant ir.
Grâce à cette projection on parvient à la méthode élémentaire
de projection sur n. Soit donc A l'espace à projeter,
A' (V, Vît) l'espace de projection et o sur *C le centre de

projection. Chaque point ade A a a{si a' désigne le point
projeté sur A'. Le point a' se trouve sur P Mais, parce
qu'il est aussi dans A', le point d'intersection des rayons
et Pfe nous représente a'k.Pour projeter un point quelconque a'
de A' sur A, il faut trouver la droite A& appartenant à 0% dans

A (V, 3). L'intersection de cette droite avec Pfe nous
donne %. On approuve facilement le théorème suivant: Le plan
d'intersection des espaces A et (on) se projette en n.
' Pour résoudre tin problème nonmétrique dans A, on le projette

sur A' et on y effectue la résolution. On fait ensuite projeter
la figure cherchée sur A, d'après la méthode ci-dessus exposée.

VI. — Ortiïogonalité.
v

*
t

"

1. — Notes préliminaires. Soient A et A' les droites impropres
de deux plans a, a'. Pour trouver les angles extrêmes d'inclinaison

de ces deux plans, il faut trouver'd'abord deux sécantes

B, B' à A, A' qui soient conjuguées par rapport à la sphère
absolue. Ce sont les droites impropres de deux plans complètement

orthogonaux ßetß\demiparallèleset demiorthogonaux à
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