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V. — ESspPACE.

1. — Triangle impropre. On a trois points remarquables
Oc, 1¢, 2¢, dans chaque espace A. Ce sont les points d’intersections
(°CA), (1CA), (3CA). Ils déterminent le plan impropre de I'espace
A. % est le point impropre de la trace T de A sur n. On P'obtient,
en joignant deux traces z, x’ de deux plans «, «’ de A (IV, 1).
Le point ic n’a pas sa i-ieme projection (11, 2). Pour le trouver,
on cherche la droite d’intersection D des plans (icT) et «. Sa
i-iéme projection D; est sur T, parce que le plan (icT) passe par
ic (IV, 2, A). On trouve d’apres 1V, 4, A sa k-iéme projection
dans aj. Parce que la droite cherchée rencontre =, les rayons
de rappels de ses points passent par ic, (I1I, 2, B). (Vest la
k-iéme projection du centre de projection ic pour la droite D.
Nous appelons °clc2c triangle impropre de I'espace A.

2. — DPositions exceptionnelles. — A. A contient m. Alors les
projections i, et *¢; se confondent. C’est done la méthode élé-
mentaire de projection avec les centres a I’infini.

B. A contient iC.. Dans ce cas, sa trace T; est sa i-iéme pro-
jection. Spécialement pour i = 2:

La deuxiéme projection de l'espace demiorthogonal & n est une
drotte.

C. A contient C et 2C. Il est donc 'unique espace impropre
de hyperespace. B

3. — Pount et espace. Soit donné un point quelconque p; dans
m. Le plan (*Cp) et I’espace donné A se rencontrent suivant une
droite P qui passe par ic. p; est donc la i-iéme projection d’une
droite P de A, passant par ic. Or, il nous faut encore un de ses
peints pour la connaitre. Le plus facile est de déterminer le
point d’intersection p’ de P et du plan (%T), parce que sa
k-ieme projection se trouve sur Tj. Le point d’intersection
de Tyy et de (*eip;) nous livre p,. P, = (i, py).

Toutes les droites P, sont paralléles.

4. — Drotte et espace. Trouvons la k-iéme projection Dj d’une
droite D de A, si D; est donnée. Il suffit de répéter deux [ois la
construction de V, 3, pour deux points a et b, sur D. Il s’en suit
aussitot que chaque droite de w peut étre considérée comme la
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k-iéme pro;ectlon Dy appartenant a D, pourvu que l’on fasse
correspondre a deux points a; et b; de D; les points ay et by sur.
Dy d’apres V,

Grice a cette methode, on peut facilement trouver le point
d’intersection d’une droite quelconque E et de l’espace A. On
“trouve, d’aprés la méthode que nous venons d’expliquer; une
~ droite D dans A telle que 'on a E; = D, et E, = D,. Les droites
E et D se rencontrent au point cherché (III, 3).

5. — Plan et espace. Deux espaces. Pour trouver 'intersection
de ces deux figures linéaires, on procéde d’aprés la méthode
précédente et on détermine ainsi le nombre nécessaire des points
communs a ces deux figures linéaires. ‘

6. — Constructions auzxtliatres pour résoudre les problemes -
non métriques dans A. On peut projeter 1’espace A d’un point o
quelconque (non situé dans A) sur un espace A’ contenant .
Grice a cette projection on parvient & la méthode élémentaire
de projection sur 7. Soit donc A = (a?c'c%) ’espace & projeter,
A’ = (*¢',%c'n) 'espace de projection et o sur iC le centre de -
projection. Chaque point a de A a a, = d;, si a’ désigne le point
projeté sur A’. Le point a’ se trouve sur P = (oa). Mais, parce
qu’il est aussi dans A’, le point d’intersection des rayons (a;%c,)
et Pr nous représente a,. Pour projeter un point quelconque a’
de A’ sur A, il faut trouver la droite A appartenant & a; dans
A (V, 3). L'intersection de cette droite avec P, = (o, @,) nous
donne a;. On approuve facilement le théoreme suivant: Le plan
d’tntersection des espaces A et (o) se projette en m.

- Pour résoudre uin probléme nanmétri_que dans A, on le projette
sur A’ et on y effectue la résolution. On fait ensuite projeter
la figure cherchée sur A, d’aprés la méthode ci-dessus exposée.

VI. — ORTHOGONALITE.

A

1. — Notes préliminaires. Soient A et A’ les droites impropres
de deux plans «, a’. Pour trouver les angles extrémes d’incli-
naison de ces deux plans, il faut trouver d’abord deux sécantes
B, B’ a A, A’ qui soient conjuguées - par rapport 4 la sphére
absolue. Ce sont les droites impropres de deux plans compléte-
~ ment orthegonaux f3 et ', demiparalléles et demiorthogonaux &

A
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