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METHODE NOUVELLI‘ DE PROJECTION
DE L’HYPERESPACE A QUATRE DIMENSIONS

I

PAR

V. Hravary (Prague).

Dans ce mémoire, nous allons exposer les principes de projec-
tion de ’hyperespace (a quatre dimensions) sur un plan, & P’aide
de deux projections seulement. Nous n’y traiterons que des
problémes fondamentaux, dont la connaissance permet de ré-
soudre les problémes spéciaux. Nous supposons la connaissance

A. de la géométrie projective dans un plan,

B. de la méthode de projection d’un espace linéaire & trois
dimensions sur un plan a I'aide de deux centres & I'infini, et

C. de la géométrie élémentaire de Uhyperespace hnealre a
quatre dimensions. |

s

I',—“ Norrons PI{I:‘.I.I]\'liNAIT{IES‘.'
1. ‘—j» Terminologie. Nous nous servons de lettres
a, b,c, .. A,B,C,’... | a, Byy, ... A,B,C, ..
pour désigner les points a, b, ¢, ..., les droites A, B, C, ..., les

plans «, 8, y, ..., et les espaces a trois dimensions A, B, C,

(brievement les espaces) dans 1’hyperespace (I'espace linéaire &
quatre dimensions). Les éléments & Vinfini seront dits impropres,
et désignés par des lettres soulignées a, A « ... |
Nous appelons méthode élémentaire de prOJectmn la methode
| sub B. Le rayon de rappel du point p joint I'une a P'autre les -
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projections du point p. Les indices i, k, toujours distincts, se
rapportent aux valeurs 1 ou 2.

2. — Eléments fondamentaux. Choisissons un plan quelconque
n avec la droite impropre °C pour pian de projection. Désignons
par 2C la droite impropre du plan complitement orthogonal
3 7. Tous les plans, dont les deux angles extrémes d’inclinaison
4 7 sont de la valeur -~ 45°, se rencontrent suivant la droite
1C, Alors chaque droite du plan passant par 1( forme avec

Pangle -+ 45°
1. — Poi~r.

1. — Un point quelconque a de Uhyperespace et la droite 'C
déterminent le plan projetant qui coupe le plan de projection =
au point ;. Nous le désignons comme la i-iéme projection du
point a. Les deux points a, et a, déterminent & leur tour le
point a de 'espace, car les plans projetants (a;1C) el (ay2() se
rencontrent en un point a: - a

Le point est fixé par ses deux projections et ces denx projections
déterminent « leur tour le point dans Ulyperespace.

I.e point @ et le plan x déterminent I'espace A = (an). On
peut considérer le point « dans ’espace A et on parvient a la
méthode élémentaire de projection. Les centres de projection
sont les points impropres des rayons projetants {(aa;) et (aa,).
Cela nous permet aussitot de trouver la distance aa, du point
a et du plan #. On Uobtient en rabattant le triangle aa,a,

dans 7.

2. —- Positions exceptionnelles. Lies projections du point a se

confondent en a, st ce point se trouve dans n. (¢; = a, = a).
Soit @« un point impropre dans unique espace impropre
(1C2C). Les projections u,, w, sur 0C ne le déterminent pas

d une maniére uniforme, parce que les plans (1Cu) et (Cu) se

rencontrent suivant une droite D. En ce cas u, “est la i-ieme

projection de chaque point sur D). Les rayons pmJetants i de

(. engendrent un paraboloide hyperbolique. Si u est situé sur

une génératrice projetante de ce paraboloide, on a u, = u,. Le

point u sur ¥ n’a pas la i-ieme projection.
Pour la distance de deux points voir IT1, 3.
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