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SUR I’INSCRIPTION DES POLYGONES REGULIERS .
 PAR '

Henri LEBESGUE, Membre de I'Institut (Paris).

) N (

1. — Tandis que I’étude de I’inscription des polygones réguliers
faite par les méthodes de I’Analyse constitue un ensemble admi-
rablement cohérent; le chapitre correspondant de la géométrie
élémentaire parait basé sur les remarques les plus disparates;
tout est & reprendre et a modifier, semble-t-il, quand on passe
du cas du carré & celui du triangle, ou du triangle au pentagone,
ou de celui-ci au pentédécagone. Peut-6tre y aurait-il avantage
a mettre quelques généralités 4 la base de ces constructions,
méme ne le pourrait-on qu’'un peu artificiellement. C’est le but
de I’exposé sommaire qu’on va lire; je me suis efforcé de montrer
que les procédés classiques ne sont que I’application des méthodes
de Gauss & des cas particulierement simples. On est ainsi tout
naturellement amené a énoncer les résultats des recherches de
Gauss; I’étude de ces recherches serait ainsi préparée dés la
géométrie élémentaire.

2. — Supposant établie la regle qui permeét de déduire la cons-
truction des divers polygones réguliers de N cotés de la division
de la circonférence en N parties égales, nous allons rechercher
des cas ou cette division peut s’effectuer a I’aide de la régle et du
compas. ‘ |

La division d’un arc de cercle en deux parties égales s’effec-
- tuant a1’aide de la régle et du compas, sil’on sait diviser la circon-
- férence en N parties égales, on sait aussila diviser en 2 N parties.
La réciproque est évidemment vraie. Nous utilisons cette remar- -
que pour transformer notre probléme: nous nous proposons main-
tenant de diviser la demi-circonférence en N parties égales.
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3. — On sait effectuer cette division pour N = 2, nous venons
de le dire. Une subdivision en 2 parties égales de chaque arc
ainsi obtenu fournit la solution pour N = 4; en continuant ainsi
nous effectuons la division demandée pour N = 2%,

Si AB est une corde d’une circonférence de rayon R, si C et D
sont les milieux des arcs A B, le triangle rectangle C A D nous
donne:

AC2 + AD2 = 4R?; AC.AD = R.AB .

Ces formules fournissent de suite les expressions des cotés du
carré, des octogones, etc., des polygones de 2% cotés.

4. —Si N n’est pas égal & 2%, ¢’est-a-dire 8’1l est de la forme 2%n,
n étant un nombre impair plus grand que 1, le probléme de la
division en N parties est équivalent a celui de la division en
n parties. Puisque cette derniére division entraine celle en 2n
parties, puis en 4n parties, etc., en 2*n parties.

Nous étudions donc la division d’une demi-circonférence en
un nombre impair, n, de parties égales; la circonférence sera
divisée en 2n parties. Soit (p) la longueur de la corde sous-
tendant p de ces parties; le svmbole (p) a actuellement un sens
pour 0 = p =< 2n. Nous allons établir des relations entre les lon-
gueurs (1), (3), (), ..., (n — 2) qui nous permettront, pour cer-
taines valeurs de n, de les construire. Il est clair que cette
construction résoudra le probléme posé; pour n premier, les
longueurs considérées sont celles des polygones réguliers de
2n ¢Otés; pour n composé les longueurs de ces cotés sont seule-
ment certaines des quantités (1), (3), ..., (n — 2).

5.— Désignons par —[n — 1], —[n —2],...—1,0,1, ... n les
2p points de division de la circonférence en 2n parties égales.
Tragons la ligne brisée 0, 1; 1, —2; —2, 3; 3, —4; ete. Les
longueurs des cotés de cette ligne sont (1), (3), (5), (7), ...,
nous ncus arréterons quand nous aurons parcouru la moitié du
cOté de longueur (n), ce qui nous rameénera au centre Q de la
circonférence considérée puisque (n) = 2R.

Les segments parcourus sont, de deux en deux, paralléles,
[puisque, entre les extrémités de 0, 1 et celles de -2, 3, par exem-
ple, on a deux arcs égaux de sens contraire]; les segments sont de
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méme sens [puisque, par exemple, les extrémités considérées se
succedent dans I’ordre -2, 0, 1, 3]. .

La résultante 0Q de la ligne brisée considérée est done le
troisieme c6té d’un triangle 0TQ dont les deux autres cotés, 'un-
porté par 0, 1, l’autre par une paralléle A -2, 1, sont

0T = (1) + (5) + (9) + ..
TQ = 8)+ (7) + ...

Les derniers termes de ces sommes dépendent de la nature de 7.
Pour n = multiple de 4--1,

0T = (1) 4 (5) + oo + (n— %) + R ;
TQ = (3) 4+ () + o + (1—2) ;

pour n = multiple de & — 1,

0T = (1) + () + . + (r—2) 5
TQ = (3) + () + .. + (n — %) + R.

- Le triangle 0TQ est isocele, car 1’angle Q01 est un angle
inserit qui comprend entre ses c6tés n—1 divisions et ’angie de
0Q avec la droite —2, 1 est un angle intérieur & la circonférence

N N
qui comprend entre ses cotés les arcs O 1et2,n, donc n—1 divi-

sions.
| Ainsi- 0T = QT, ceci nous donne la relation fondamentale:

) + (5) + - +(n—4> FR=() () ot (0—2) ,
si n:é/c+1',

[
: - | _

[ O+ @+t =29 =)+ 0+t (=8 + R,

\ si o n— 4k —1.

6. — Soient AB, A, B, deux cordes paralléles et de méme
sens de la circonférence de rayon R, soit BC un segment équi- -
pollent & A, B,, le triangle AB, C est isocéle, son c¢6té B, G étant
~ équipollent & A, B,, qui est égal & AB,. L’angle au sommet B, de
ce triangle est celui des angles des deux cordes AB,, A\B qui
- contient AB; si la longueur de AB est (p) celle de BB, (¢), auquel

»
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cas celle de A,B, est (p+2¢), 'angle considéré est un angle inté-
rieur contenant entre ses c6tés un nombre de divisions égal a

p—{-—{‘.’.n——[p-—}—Qq]} = 2[n — q] .

Done, il est celui du triangle isocéle dont la base «f3 est une
corde de longueur (n—¢) et dont le sommet est le centre Q de la
circonférence. La similitude de ces deux triangles isoceles donne:

AC _ af p)+ (p+29) _ (n— q)
AB, T aQ (P -+ q R

’

¢’est la seconde relation fondamentale que je voulais établir.
Mais il convient de la prouver aussi dans ’hypothese ou la signi-
fication du symbole (k) aurait été étendue a toutes les valeurs
entiéres positives ou négatives de k, grdce a 1’égalité de défini-

tion:
(h) = — (k — 2n) .

Un sens de parcours ayant été choisi sur notre cercle, fixant
une orientation dans le plan, considérons un arc Ab de milieu 7 et

le systemes d’axes Qz, Qy tel que l'angle xQy soit égal a % et

que la demi-droite Qx passe par i. Si ’arc Ab est trés petit po-
sitif, il est clair qu’il y a accord entre les sens de Ab et de Qy; si
Pon fait mouvoir & cet accord subsiste tant que b ne passe pas
d’un coté a 'autre de A auquel cas ’accord cesse pour se repro-
duire & nouveau quand b passe A nouveau par A, et ainsi de suite.

Si done on fait varier A de zéro a p;, p étant un entier positif
ou négatif, b vient en un point B, i en I, 2Qy en XQY et la me-
sure de AB, comptée parallelement a 'axe QY, est (p).

Soient maintenant A, A, BB, deux arcs égaux a gl'%; I'arc

—_——

AB, = A/A + AB 4+ BB, = [p + Qq];l; ,

a méme milieu I que 'are Afl\B, donc le segment A, B, , compté sur
Iaxe QY, est égal a (p + 2¢). Si nous construisons le segment
BG équipollent & (p + 2¢), le segment AC compté parallélement

a QY est égal a
() + (p + 29) .
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" L’un des arcs AB, est égal & (p + _q)—- soient I, son mlheu et

QX Y, le systéme d’axes rectanoulalreq d’orientation directe,
~ tel que Q X, passe par I,. Le segment AB,, compté parallelement
QY,, est egal a ,
p+q)

" Soit f3 le point de rencontre de la demi-droi\te QY, avec la
circonférence et soit « le symétrique de 3 par rapport a QX.

. . ' T .
¢’est-a-dire £ = 4 7 done

. L’un des ares 113 est égal 3 II - :;, 27

I'un des arcs af3,quia I pour miheu, est égal & q;:— +r=[n+q] ,z,: y

Par suite «3, compté parallélement & QY, a pour mesure (¢ + n)-
~Les deux triangles isocéles AB,C, 5Qa ont leurs cotés pa-
ralleles ils sont semblables. On én déduit, en mesurant les seg-
ments parallelement a QY et 2 QY,,

(p) + (p + 2) _—(r—q
P + 9 — R

-

s

o]
T~
b/

Changeons de notations; posons
p+q:'a, nfq:[);
d’out
p:n;+l;——-n,' g =n— b, _p+2q:a—-b+n-,

n'0u§ aurons la seconde relation fondamentale:
11 (aﬁ) (b)) = [(a+ b —n) + (@a— b+ n)]R

7. — A laide des relations I et II en peut calculer et construire -
nos inconnues (1), (3), ... (n — 2) pour certaines valeurs de n.

Cas de n = 3. Il y a alors une seule inconnue (1). La relation
I, puisque n est un multiple de 4 diminué de un, est ici:

n | . () =R,

D’ou la construction de l’hekag‘one, puis du triangle. On mon-
trerait que, pour ce cas particulier, la démonstration de I se

-
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réduit au raisonnement qui sert habituellement a la détermina-
tion du c¢oté de ’hexagone. .

Quant au calcul du ¢6té du triangle on peut le faire al’aide des
formules données au paragraphe 3, mais il est préférable de
remarquer que, pour le cas ici considéré de n impair, si la corde
0, p de longueur (p) est le ¢coté d’un polygone régulier de 2n cdtés,
la corde p, n de longueur (n — p) est le c¢oté d’un polygone de
n cotés et inversement. Or le triangle opn étant rectangle, on a:

(P2 4 (n— p)? = 4R*.

Les polygones de n et 2n c6tés sont donc associés deux a deux
de telle facon que les cOtés ¢y, co, et les apothémes a,, as, de ces
poelvgones soient liés par les relations

9 o
= o LR2 . 9 _— v _—
¢, + ¢, = 4R® 2a, = ¢y, 2a,, = ¢, o

8. — Cas de n = 5. Il y a alors deux inconnues (1) et (3) et les
relations fondamentales donnent:

M (1) + R = (3 : () (1)(3) = [(— 1) + (3)]R .

Or (— 1) =—1).
On connait done la différence (3) — (1) et le produit (3) (1)

d’ou le calcul et la construction des c6tés des décagones, puis des
pentagones.

On montrerait & quoi se réduit ici la démonstration des rela-
tions (I) et (IT), on reviendrait ainsi aux considérations classiques
a une modification insignifiante prés.

9. — Gas de n = 17. Les inconnues sont (1), (3), (5), (7), (9),
(11), (13), (15). La relation I £’écrit:

B M+ 0+ O+ (18) + R=(3) + (7) + (11) + (15) .
La relation IT donne vingt huit égalités, parmi lesquelles nous

choisissons les suivantes parce qu’elles font intervenir aux deux
membres les mémes groupes de deux ¢otés.

[’Enscignement mathémn., 24¢ année; 1924 ct 1925. 18




270 | H. LEBESGUE

(1)(13) = [(—3) + B)IR = [— (3) + (5)]R

- ) BB =[(—9) + (15)]R = [— (9) + (15)JR
(9) (15) = [(7) + (11)]R , |
(7) (1) = [(1) + (13)]R .

Ces égalités, tout a fait comparables a celle que nous a fourni la
relation II dans le cas de n = 5, montrent que I’on saurait cons-
truire les huit inconnues si ’on savait construire les quatre lon-
gueurs:

[— &)+ G =@+ 5], () + a0, (1) + (3]

- puiqh’en effet on connaitrait alors, par exemple, la différence et le
produit des deux cotés (3) et (5), la somme et le produit des deux
cOtés (1) et (13). Nous avons donc simplifié notre probléme;
essayons de le simplifier encore en groupant deux a deux les

quatre longueurs représentées par les crochets précédents.
La relation II donne:* ,

[—.3) + (911(7) + (11)] = — @)(7) — 3)(11) + (5)(7) + (5)(11) =
=R§+(7)—(13)+(3)-—(9) ‘
| — (5) 4+ (15) — (1) + (11) | = R*,
car la quantité entre accolades est égale & R d’apres I;
[— (9) + (15)] [(1) + (13)] = — (1)(9) — (9)(18) 4 (1)(15) + (13)(15) =
= R{+ (7) — (9) — (5) — (13) ‘
— (1) + (8) + (11) + (15) | = R* .
Puisque, dans le grbupement ainsi choisi, nous connaissons le
produit des deux crochets d’'un méme groupe, nous nous propo-
sons de construire la somme ou la différence des crochets associés.

L’examen de la relation (I) eonduit & se propose.’ la construction
des deux accolades

fa} = {—[— @) + (6)] + [(7) + (M)H,
{o} === )+ 081+ () + 131}
La relation (I) s’écrit: ‘

[EEUES
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la relation 11 donne:

el o} = (3)(9) — (3)(15) + (1) (3) + (3) (13) — (5)(9) + (5) (15)
— (1) (5) — () (13) + (N (9 — (D (15) + (1) (7) + (7) (13)

+ (9) (11) — (11) (15) + (1) (1) + (11) (13)

ES

— (5) + (L1) — (1) — (8) — (13) + (15) — (1) = (7)

S 3) — (13) 4+ 3) + (1) + (1) - (18) — (1)
=R — (9) — (1) + (15) — (5) — (9) — (9) + (11)

+ (3) + (1) + (3) + (15) — (9) — (13) — (3) §

+ () + () + (15) ,.\
= 4 {— (1) 4 (8) — (5) + (7) — (9) + (11) — (18) + (15) | R

}

4R? .

Done {a} et {b} sont deux longueurs dont la différence est R
et le produit 4 R?, {a} étant la plus grande.

[(7) -+ (11)] et [— (3) -+ (b)] sont deux longueurs dont la diffé-
rence est {a} et le produit R2, [(7) + (11)] étant la plus grande.

[(1) -+ (13)] et [ (9) -+ (15)] sont deux longueurs dont la diffé-
rence est {p} et le produit R2 [(1) + (13)] étant la plus grande.

Enfin (1) et (13) sont deux longueurs dont la somme est
(1) + (13)] et le produit R [—(3) 4 (9)], (13) étant la plus
grande. |

D’ou le calcul et la construction de (1) et {13). Les autres incon-
nues se calculent de méme; quant 3 leur construction elle est effec-
tuée deés que P'on a divisé la demi-circonférence en 17 parties
égales grace aux longueurs (1) ou (13) construites.

Le calcul des cotés des polygones de 17 ¢otés se déduit de 1a
par le procédé indiqué en fin du paragraphe 7.

10. — Dans la construction ci-dessus les 8 = 23 inconnues ont
d’abord été réunies en groupes dont les éléments constituants
peuvent se déterminer dés que I'on connait 4 = 22 nouvelles in-
connues, les crochets. Ces crochets ont de méme été réunis deux
par deux, ce qui montrait que leur détermination ne dépendait
que de celle de deux accolades dont on connaissait la différence
et le produit.

Une méthode analogue ne pourra étre utilisée pour une autre
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valeur-de n, avec la considération d’un nombre différent d’incon-
nues successives — ( ), [ ], {} — que sile nombre des inconnues

primitives — les () — est une puissance de 2. Or, ce nombre est
n—1

2
~ Gauss, qui a le premier montré la possibilité d’inscrire le poly-

gone de 17 ¢otés, a prouvé en méme temps que notre probléme
pourrait étre résolu par une méthode analogue & celle du para-
graphe précédent, toutes les fois que n est premier et de la forme
2k 4 1, et il a donné les régles suivant lesquelles les ( ) doivent
8tre groupés en [ ], ceux-cien { }, etc.

11 a montré de plus que le probléme était impossible pour toute
valeur premiére de n, qui n’est pas de la forme 2* 4 1.

Les valeurs connues de n qui sont premieres et de la forme
2k 41 sont peu nombreuses; il n’y a que 3, 5, 17, 257, 65537. Les
autres valeurs de n remplissant ces conditions, s’il en existe, sont
trés supérieures a la derniére indiquée 1.

- 11. — Si notre probléme est possible pour n = pg, ¢’est-a-dire
si nous pouvons diviser la demi-circonférence en pg parties
égales, nous pouvons la diviser a fortiori en p parties. Donc nous
n’avons a examiner un nombre n composé que si nous avons .
déja résolu le probléme de la division pour tous les diviseurs
de n. Nous pouvons, par exemple, examiner le cas de n=3.5=15.

Pour un tel nombre n composé toutes les parenthéses (1), (3) ..
(n-2) ne sont pas inconnues; pour n = 15, nous connaissons de]ét
(5), qui est le c6té de ’hexagone, (3) et (9), qui sont les cotés des
décagones. |

Donc pour n =15 nous n’avons comme inconnues que (1), (7)
(11), (13). La relation I donne

, donc n doit dtre de la forme 7 = 2k 1,

(1) + (8) + (9 + (13) = (3) + () + (1) + R ;

1 Pour un exposé des recherches de Gauss fait surtout en vue de leur appli-
cation A linscription des polygones réguliers, on se reportera a un petit opuscule
de F. Klein dont J. Griess a publié une traduction francaise sous le titre: Lecgons
sur certaines questions de Géomélrie élémentaire (Nony, Paris, 1896). Je me suis, &
dessein, trés peu écarté du texte de Klein.

-On pourra consulter aussi le tome II des Questioni mguardantz le matematzche
_ elementari de F. Enriques, oll I'on trouvera en particulier des constructions du poly-
gone de 17 cotés dues a Serret, & Staudt, a Gérard. Cette dernlére nutxhse .que le
compas.
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la relation 11 donne en particulier

(1) (1) == [— (3) + B)IR ., (7)(13) = [(5) + R .
La détermination de nos quatre inconnues revient donc a celle
des deux crochets

[— W+, =0+ 03],

dans lesquels on a mis des signes — de fagon & utiliser la relation
I, qui s’écrit :

[— )+ (1] —[— W+ U] =R+ —6) =0 =—R.
11 suffit done de calculer le produit des crochets:

[— () + (8] [— (1) + 10)] = (1)(7) — ()(11) — (1) {(43) + (11)((13)
= [— (7) + (9) — (3) — (11) + (1) — (3)
+ (9) + (13)]R
2.

Ceci donne la solution de notre probléeme pour n = 15.

Les relations fondamentales I et I peuvent donc encore servir
pour certaines valeurs composées de n. Mais il conviendrait
d’ajouter que, si la méthode précédente est acceptable en ce qui
concerne le calcul des c¢dtés, elle est inutilement compliquée pour
leur construction. On exposerait la méthode classique, on conclu-
rait que la construction est possible pour

arl -C
n— 27345%17¢ ... .

les nombres suivant 17 étant les différents nombres premiers de
la forme 2% 4- 1, m étant un entier positif ou nul, a, b, ¢, ... étant
égaux a 0 ou 1.

Et ’on affirmait que la construction n’est possible que pour ces
valeurs de n.

12. — J’ai terminé I’exposé que j’avais en vue. Il est certain
qu’il ne convient pas pour des débutants; méme, il ne saurait se
justifier que si ’on traite de la construction du polygone de 17
cOtés. Et comme cette construction sort du domaine des pro-
grammes ordinaires, on ne peut préconiser un exposé du genre du
précédent pour aucune classe. Peut-étre, cependant, n’est-il pas
mutile d’avoir réfléchi & la possibilité de bétir de tels exposés;
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‘on s’efforcerait ensuite, inconsciemment peut-étre, de présenter

la construction de I’hexagone et des décagones sous une forme
telle qu’elles apparaissent comme les deux premiéres applications
dun procedé fournissant des résultats plus généraux. Et peut-
étre, en exercice, tralteralt -on parfms le cas des polygones de 17
cotés. ‘

Puisqu’on ne peut s’adresser qu’a des eleves ayant deJa fait pas
mal d’études mathématiques, on pourrait simplifier Pexposé ci-
dessus en faisant appel A la trigonométrie et ’on retomberait
ainsi, & des détails infimes prés, sur les calculs mémes de Gauiss.
Larelation II n’est qu'une conséquence particuliére de la formule
donnant sin p + sin ¢, formule dont nous avons en somme donné
au § 6 une démonstration géométrique directe. La formule I
résulte de la sommation d’une suite de sinus d’arcs en progres-
sion arithmétique. |

Ceci indique une étroite parente entre les relations I et II, qui

n’a pas été mise en évidence précédemment. Pour la faire appa-
raitre, considérons des cordes paralléles de la circonférence de

rayon R, AB, A\B,, A,B,, ... et supposons que I'arc AB soit de p.
divisions (égales chaounes a ;Tf-), que ATA e ﬁ?,z A:A, oz B,,Ez

= ... = g divisions. Kt considérons la ligne brisée ABA ,B,A,B, ...,
prenons BC équipollent a A B,, le triangle ACB, (celui que nous

- avons considéré au paragraphe 6) est semblable 4 un triangle

o, 3,7, inscrit dans le cercle et obtenu en prenant a”@1 =: ¢ divi-

——

© sions, 61 ~, = q divisions, y,«, = 2n — 2q divisions. Donc ona:

AC _ @y, o (N2 _ (2n—2) _ (29

-oun = = —_—

AB, o a, 3, (p + 9 ()

Ceci est évident, q_iiand p et ¢ sont des nombres positifs assez
petits mais, en opérant comme au §6, on montrerait que la rela-
tion est générale. Il résulte de 14, en prenant p’ = n—yq,

, : A

2g) _ )+ (p+2) _ )+ +2) _ (g + (kg _(1—q)
¢ l+a9 P +9 (1) K

e ‘est la relation II.

Prenons CD équipollent &4 A BQ, le tmangle ADB est semblable
a un. triangle a, 9,8, inscrit, tel que ay 3, = q divisions,
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3,0, = 2¢q divisions, «,d, = 2n — 3¢ divisions. D’ou
)+ (p + 2¢9) +(p + 49) _ (39)

b+ +(p+30 T ()
Et ainsi de suite. Les formules ainsi obtenues comprennent la
relation I; prenons en effet ¢ = 2p et supposons p premier avec n,

nous aurons, pour le cas o n = 4k - 1,

<5z_ﬁ;_{>
(p) + Gp) + (9p) + .. + (B —1]p) _\ 2 ]

B F -+ (26— 3p) B (n-'l,) |

ou, en divisant par 2 les deux termes du premier membre et en
simplifiant le second grice a la relation (k) = (2n — k),

(p) + Gp) + - + ([n = 4]p) + R _

Bp) + e+ ([n —2p)

ce qui est la relation I. Le cas de n = 4k — 1 se traite de la méme
maniere. Notre nouvelle démonstration de I ne différe de la pre-
miére qu’en ceci: nous avions pris p =1, et de plus, nous raison-
nions sur un triangle 0T (), alors que nous raisonnons maintenant
sur I’homothétique de 0T Q pris par rapport & 0 et dans le rap-
port 2.

Ce triangle OT( étant isocele, il existe un triangle aQb, de
sommet () et dont la base est une corde de la circonférence, qui
est semblable a 0TQ; l’angle en T étant égal a 'angle ABA,,
¢’est-i-dire a —21% = , la corde ab est (p). La similitude de
0T et aQb nous permet d’écrire, pour n= 4k -1, par exemple,

la relation I sous la forme plus élégante:

R (p)+6p)+ ... +R _ (Bp) + ... + ([n—2]p) _

(p) R R
Pour n = 5, par exemple, ceci se réduit a

R_ MW+ R__@3

M~ R T R

formules qui suffisent pour P'inscription des décagones réguliers.
La relation I, complétée comme il vient d’étre dit, suffit

d’ailleurs toujours pour I'inscription de tous les polygones réguliers

mscriptibles & 'aide de la régle et du compas.
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