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éventualité nous croyons qu'il serait malaisé d'obtenir un cas

particulier du problème des trajectoires orthogonales, qui pei mit
de se rendre plu§ ou moins compte de la manière assurément

singulière dont les lignes de courbure se comportent dans le

voisinage d'un semblable ombilic.
Enfin nous allons faire une remarque qui, très probablement,

ne peut pas être généralisée: dans les différents exemples que

nous avons traités (4°-8°), toute ligne de courbure passant par un
ombilic est une géodésique 1.

Liège, le 20 juillet 1925.

SUR LES VOLUMES CONOÏDAUX

PAR

Pierre Papillon (Strasbourg).

1. — Le sujet n'est en lui-même point nouveau, et, c'est

aux travaux de M. A. Buhl qu'il se faut reporter pour une
documentation plus complète. Annalesla Faculté des Sciences
de Toulouse,3me série, tome II, pages 57 et sqq.) Mais, dans ce

Mémoire, l'auteur avait plus précisément en vue des propriétés
attachées aux transformations stokiennes. Afin d'éviter des

recherches complémentaires, pourtant fort intéressantes, je
rappellerai tout d'abord la définition et l'expression générale
du volume conoïdal relatif à une cloison et à un axe.

2. — Soient un contour fermé (C) tracé sur une surface (S), et
un axe (D) de l'espace — que nous supposerons extérieur à la
cloison pour éviter des difficultés inhérentes à tout autre
disposition — ; le volume conoïdal W relatif à cette cloison et à

i Dans une Note complémentaire au tome IV de la Théorie des Surfaces de
Darboux, se trouvent dessinées les lignes de courbure de la surface xyz p3 ; je
n'ai eu connaissance de cette Note qu'après la rédaction de mon article.
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l'axe (D) est limité à la cloison et aux génératrices orthogonales
à (D) qui s'appuient à la fois sur cet axe et sur le contour (C).
Cette appellation se justifie, au reste, d'elle-même.

L'espace étant rapporté à trois axes rectangulaires 0#, 0
nous fixerons la position de l'axe (D) par la donnée de ses cosinus
directeurs X,y, v, et d'un quelconque de ses points A
soit alors M x, y, z)un point pris arbitrairement sur la cloison,
entouré d'un élément superficiel de où les cosinus de la normale
sont a, ß,y. Le volume conoïdal élémentaire a pour expression:

1
— MH da cos 0

H étant le pied de la perpendiculaire abaissée de M sur l'axe
(D), 0 l'angle de HM et de la normale à l'élément c£cr. Des calculs

simples, sur lesquels il est inutile d'insister ici, donnent alors

pour l'expression du volume conoïdal total:

W
1

"2 //s
« ß r
X [X v

v (j— b) - [*(£— c) X(£— c) —v {x —a)X(y—

d<s

W

Lorsque l'équation de la surface (S) est prise sous la forme

s z(x,x),il vient, avec des notations bien connues:

W //
— p — q,+ 1

X p. v

— — p.(z —c) \(z-c) -v(x-a)-X(j-t)

Si l'axe (D) coïncide avec Oz,ensorte que

dx dy

(!')

X 0

a

p. 0 v 1

b c 0

W prend l'une des deux formes très simples:

W iJ*f [— ax — ßj] drs
(2)

ou

w jff [px + if\dx dr (2')
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3. — Equation aux dérivées partielles des eonoïdes. — Si la
cloison est prise sur un conoïde droit d'axe (D), il est bien
évident que le volume conoïdal W est nul, chacun des éléments
de ce volume l'étant lui-même [cos 9 0].

L'équationobtenue en annulant le déterminant de Vintégrale
double de(1)est donc Véquation aux dérivées partielles des eonoïdes

droits d'axe (D): elle est du premier ordre et linéaire.
Si nous posons:

A a2 + v2 A' — v2 4- X2 A" X2 + u.2

\B— p B; — — vX B" — —

'C~ -— (u2 v2) a -f- ).u. b Xv c (3)

C =:-(v2 + X2) b+
C" ~ (X2 -f~ u2)e-f-

cette équation s'écrit:

a (Ax + B"j + Ws + C) + ß + A 'y + B^ + C')

+ T(B'* 4- By 4- A" z 4- C") nO (4)

I] y a, en elle, une symétrie analogue à celle que l'on rencontre
dans l'étude des quadriques, et que nous allons préciser.

Faisons correspondre à l'axe (D) la quadrique (Q) d'équation:

Ax2 4- A Y2 + A" s2 4- 2 Byz 4- 2B' zx 4- 2B" xy

4~ 2Cx4~ 2C 'y4~2C ~ 0 (5)

Les coefficients de a, /3, y, sont les premiers membres des

équations représentant les plans du centre de (Q) :

Ax4~B"7 4~ B' - 4- G ~ 0

/ B"x4-A 'y 4- Bz4-C 0

B'x4-By 4- A" s 4- =z 0

et, d'après les trois dernières équations (3), le point A est un
centre pour cette quadrique.

Elle n'est, du reste, pas la plus générale; car son équation,
qui semble dépendre des 9 paramètres

A, A4 C"
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ne dépend en réalité que de 6 d'entre eux, les À et les B étant^
en effet, liés par les trois relations:

4 B2 A2 — (A' — A")2
4 B'2 A/2 — (A" — A)2 (6)

4 ,B"2 A"2 — (A — A')2

Pour examiner la nature particulière de (Q), nature indépendante

de la position de (D), nous prendrons, pour un instant,
cet.axe comme axe 0z, le point A étant à l'origine: l'équation
de (Q) devient alors

x2 + j2 0 ;

faisceau des deux plans isotropes issus de (D)
De là le théorème suivant:

Lacondition nécessaire et suffisante pour que linéaire
aux dérivées partielles du premier ordre1 dont les coefficients sont
des formes linéaires des variables y, z, soit celle des conoides

droits d'axe (D) est que la quadrique (Q) associée se réduise aux
deux plans isotropes issus de (D).

Supposons alors que cette propriété ait lieu : les solutions
s'obtieîinent sans intégration; et c'est là que réside tout l'intérêt.
Il suffît de remarquer que, dans un système de référence où

(D) est pris pour axe AZ, la solution générale s'écrit:

et d'effectuer sur cette équation la substitution orthogonale
convenable, qui rétablit les variables primitives.

Remarque. — Nous trouvons, à cette occasion, les 4 conditions
nécessaires et suffisantes pour qu'une quadrique se réduise à

deux plans isotropes: ce sont les 3 conditions (6), jointes à la
suivante:

A B" B' G

B" A' B C'

B' B • A" *C"

C C C" D

1 Une décomposition facile, effectuée sur (5), donnerait:
(ja2 + v2) X— a) —Çk dsz iv) (y — qr i^) (z — c) 0

plans tangents au cône isotrope

(x — a)2 + (y—. 5)2 -j- (z — c)2 0
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4. — Surfaces pour lesquelles lWune forme donnée. — On

peut se proposer de déterminer les surfaces (S) pour lesquelles
l'intégrale double présente une forme déterminée, exprimant en
particulier certaine quantité géométrique, étude analogue à

celle que s'était proposée M. Buhl au sujet des volumes
tournants. Nouvelles Annales,5me série, tome II, pages 10 et sqq.)

Soit ainsi, (D) étant pris pour axe 0z,

px + YJzj W

la fonction y (z)étant fixée à l'avance; pour une certaine cloison
prise sur une quelconque des surfaces intégrales de (7)

«*<*> xk.f (Uj (8)

nous aurons

w 1
/. r - dy

2
1 J J©''

s

Etudions quelques formes particulières:
1° y (z) z.

Une cloison appartenant aux surfaces (S)

donne un volume conoïdal d'axe proportionnel à l'aire
plane S*, projection de la cloison sur le plan

2° y (z)L (mod. z).
Une cloison appartenant aux surfaces (S)

; • f(ï)
donne un volume conoïdal proportionnel au volume Uz
cylindrique compris entre la cloison et le plan

3° y (z)~mL [mod. az + b)i
Une cloison appartenant aux surfaces (S)

(az + b)'" xk.f(C\
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donne un volume conoïdal W d'axe Oz tel que

w k1sj + k2uz,
en posant

'
2K '±1± 2Kj —

1 a m m

Toutes ces surfaces (8) ont été envisagées à d'autres point
de vue par M. Y. Jamet AnnalesVEcole Normale Supérieure :
Sur les courbes et surfaces tétraédrale,1887). Ces surfaces sont
celles pour lesquelles le segment OT, déterminé sur l'axe des

par l'origine 0 et le plan tangent en M, est une fonction de z\
— ici

kor
<P '{*)

Leur auteur les a considérées comme type remarquable de

surfaces dont les lignes asymptotiques se déterminent par simple
quadrature1. (A. Buhl, loc. cit., page 62). Gomme le fait remarquer

M. Buhl, la propriété envisagée plus haut n'a lieu sûrement

que pour des cloisons n'admettant aucun plan tangent parallèle
à l'axe Oz: dans le cas contraire, l'intégrale double pourrait ne

point conserver un sens dans les limites de l'intégration.
5. — Volumes conoïdauxpropor,quant à 2 axes. —

Nous en arrivons actuellement à une question plus complexe,
celle de la détermination des surfaces (S) sur lesquelles on peut
tracer des contours donnant, quant à deux axes (DJ et (DJ
des volumes conoïdaux en rapport constant:

«1WJ + 7"2w2 0 (9)

Nous prendrons pour axe Oz la perpendiculaire commune
aux deux axes (D) et pour équations des deux axes

z— a0

xsin w —y.cos 0

et x.sin w+ y cos (V r 0

1 E. Ptcard. Traité d'Analyse, t. I, chap. XXV.
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Pour la disposition des axes de coordonnées, d'ailleurs
classique, on se reportera à la figure.

L'équation (9) devient alors, en posant toutefois

m9 — /??.
k — - " i

m2 -f m±

a (xsin2 (V + ky sin w cos w) + ß (r cos2 + kx sin w cos

"f" Y (~ ~f~ ^ 0 •
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Le système intégral à considérer est le suivant:

dx
dt — x sin2 w kysin cos

dy
— zz:y,cos2 -f" kx. sin w cos w

dz i *
'

'*

dt z + ak

On en déduit, par des opérations connues,

(x cos a— y sin a) (x sin a + J cos a) A el

(x sin a -|~ y cos à) : (x cos a — j sin a) B e**

z zzz C et ~ ak t

en posant:
tg 2a k tg 2iv

(10)
X cos 2iv séc 2a m "\/cos2 2tv -}~ ^'2 • sin2

Il est alors indiqué de faire le changement défini par la
substitution orthogonale

X x.cos a — y sin a

Y x sin a -}- y cos a (11)

Z z— z ak ;

l'équation des surfaces intégrales est ainsi:

'

z XY. F [X*+1 Y^-1] (12)

Cette forme met en évidence une génération de ces surfaces

par intersection des cylindres paraboliques généraux

X*+1 Y*""1

et des paraboloïdes équilatères
' X Y te:~X \.

ces constantes étant liées par une relation arbitraire; dans la
suite, nous verrons une définition plus intéressante au point
de vue de l'Analyse, et qui s'applique à des solutions plus
générales encore.
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Toutes ces surfaces (12) admettent Z'Z, perpendiculaire
commune aux deux axes (D) donnés, pour axe de symétrie; de plus,
celles pour lesquelles

F [0''+1 0A a)

contiennent X'X et Y'Y, qui constituent ainsi deux génératrices

rectilignes fixes fi
Examinons quelques cas particuliers.
6. —Cas (Taxes (D) parallèles. — Dans cette hypothèse

hangle w est nul, en sorte que

X 1

et les surfaces sont les conoïdes droits

dont Vaxe est généralement parallèle à X'X, et coïncide avec lui
dans le cas de volumes équivalents.

L'intégration directe est au reste immédiate. Nous n'insisterons

pas sur le résultat obtenu, car nous en verrons bientôt
une généralisation.

7. — Cas d'axes (D) orthogonaux. -— L'angle w étant égal à

~, de telle sorte que

les solutions admettent pour équation:

Z XY F [XA"+i Y*-1]

Le système de référence est ici déduit du primitif par une

translation (— ak) équipollente à Z'Z, et une rotation autour

1 Si nous supposons que le rapport, h varie, le lieu de ces deux génératrices s'obtient
immédiatement d'après les relations:

x y tg m. t ak + 2 0 tg k tg 2rf ;

on en déduit, par élimination de k,

z (x2 — y2) —• 2axy col 2w 0

C'est un conoïde droit d'axe Z'Z, et transformé du conoïde de Plücker dans la
transformation :

x' x y' iy z' e= iz

L'Rnseignomenl 2\« innée; 1921 ot 1925. 17
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de cet axe: c'est ainsi un mouvement hélicoïdal d'axe Z'Z dont
la rotation composante ne dépend pas de ^ 0).

Dans le cas où kest nul, c'est à-dire où les volumes sont
équivalents, les surfaces intégrales

sont des surfaces deJamet,dont la nature est indépendante de
»

la distance des axes conoïdaux.
Il est aisé de voir que c'est le seul cas où les surfaces (12) se

réduisent à des surfaces de Jamet: car 1 ne saurait être nul
/

que si ços 2 wetk le sont simultanément.
8. — Cas de volumes équivale.1° m2 c. à d.

k 0

L'intégration directe du système correspondant donne pour
solution générale

^sinâ wx p [x~cos2 w jsin2 w]

Les surfaces intégrales ne dépendent pas de la distance 2

des axes (D): on peut donc, sans changer le rapport des volumes,
déplacer parallèlement à eux-mêmes les deux axes conoïdaux.

2° m2 — c. à d. k oo.

On troùve alors pour équation des surfaces

exp. sin 2= + y) F (x2 —

qui, par une rotation de ^ autour de Z'Z, se ramène au type

e* X? F [XY]

en posant
2

P sin 2
* >

9. — Ayant maintenant précisé la nature des surfaces sur

lesquelles se peuvent tracer les contours (C), examinons quelque

peu la réciproque; nous rechercherons les couples d'axes (D)

pour des surfaces (12) données.

Rappelons que, prenant pour trièdre de référence HXYZ
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(fig. 1), les équations des deux droites (DJ et (D2) sont
respectivement :

Y X tg (a + w)

Z m a(k-j-1)

et
J Y X tg (a - w)

| Z a(k — 1)

en sorte que
HAj a+ 1)

HA2 — a— 1)

Les couples d'axes (D) s'obtiennent donc en groupant deux
à deux les éléments de la congruence rectiligne rencontrant
orthogonalement Z'Z. Si d'ailleurs les indices m sont fixés, la
correspondance entre les points Ai et A2 est homothétique, car:

HA2 k — 1

HÂ, "H 1 ~~

Plus particulièrement, fixons l'un des axes, (DJ par exemple
de telle façon que:

h a (k+ l)
(13)

m lg (a -f w)

et recherchons le lieu des axes (DJ qui lui correspondent. Que
ce lieu soit un conoïde droit d'axe Z'Z, nous n'en doutons pasy
d'après ce qui précède; nous allons voir qu'il s'agit du conoïde
de Plûcker, ainsi envisagé sous un jour nouveau après tant d'autres

L Les équations de (DJ s'écrivent en effet, moyennant (13)„

Y X tg (a — w)

k — 1
h

k + 1 '

d'autre part, de

u — tg (a + w)

t.- — tg (a — w)

1 C'est ainsi que. dans une question analogue concernant des volumes tournant»
proportionnels, le cylindroïde m'était apparue comme lieu d'axes hélicoïdaux : voir
A. Buiil, Nouvelles Annales de Mathéma'iques, 5me série, tome II, page 334..
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' /

jointes à (10), résulte la relation

" (i + + « (i + **>.. ° •

De là l'équation du lieu cherché, obtenue en éliminant k et

Z (X2 + Y2) + N XY s= 0

avec

N A.i±JL\' v.
C*

C'est un conoïde de Plûcker; il contient, remarquons-le,
l'axe (D4) lui-même, et se déplace homothétiquement avec lui.

10. — Position d'un problème plus — Généralisant la
question précédemment résolue, il conviendrait de rechercher
les surfaces supportant des contours fermés (C) tels que:

-J- w2^2 4~ •• • 4~ miH"••• 4~ ®
» (^)

où les m sont des constantes données et les W les volumes conoï-
daux relatifs à (C) et aux divers axes

(Di) > (D2) > ••• ' » ••• ' (^A-) »

de l'espace.
Formons l'équation différentielle du problème: le calcul est

analogue à ceux des §§ 3 et 5. En posant:

/ A Em, (KJ + v,2) A' — Sw<(vî + X2) A" S + $
\ B — B' — Smt.(x.v. B" —

\ — G S m.(p.*+ v2) a.— Sm.X.p..6. — Sm^.v.c. f (15j
i — C S

\ — G" S
'S

avec des notations qui se précisent d'elles-mêmes,, le résultat
rappelle, par son aspect, l'équation (4):

a (A# +B"y-|- B'z + C) j
-f- ß (&"x-f- k'y+ Bz -f- G') (16)

-f- Y (Ê' jc +% + A" z + G"). 0
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Mais il y a, avec (4), une différence essentielle: les coefficients

A, B, C, sont indépendants; la quadrique (Q), d'équation (5),
est de la forme la plus générale.

L'intégration de (16) ne présente aucune difficulté théorique,
et dépend de la résolution de l'équation en S de (Q). Mais les

calculs sont pratiquement inextricables; aussi n'examinerons-
nous ici que quelques cas qui, pour être moins généraux, n'en
offrent pas moins un certain intérêt.

Auparavant, faisons une courte remarque: Soit à effectuer,
pour une cloison donnée, le calcul de la somme

S(W) /«lW1 -f + ,nkWk

c'est-à-dire

iS![a •F+13 G + t •H] da '

F, G, H, désignant les coefficients de a, /S, dans (16).
Cette intégration n'est, en général, point réductible à une

intégrale simple par transformation stokienne: on doit avoir

ö F ö G ö H
_, | — q—— — o

O X 0 Yö S

ou
A + A' + A" 2.2 m, 0

V

Sous cette seule condition,que la somme des indices soit
Vintégrale double se transforme en une intégrale simple. De là
un moyen d'obtenir une foule d'expressions

P (*& y y s) doc -j— Qdy —]—

différentielles exactes sur les surfaces, en particulier sur (12).
11. — Axes parallèles à une même direction. — Prenant cette

direction pour axe Oz,

\ — 0 • H-t 0 • 1
ce- 0 ;

par suite, en (16),

[ A A' 2 m( —M A" 0

B B' B" 0

— C 2 — C —2 C" 0
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Le système intégral correspondant à (16)

dx dy dz
M* + C ~ Mj C' ~ T

admet pour solution
r% + c'-i

' L Ma- Cj
\

On reconnaît l'équation générale des surfaces conoïdes-droits
ayant pour axe la droite

\x•"M"

V G' '

C'est la parallèle à 0 zissuedu centre des distances
proportionnelles des points A*(af-, bi,en d'autres termes, si l'on
fait correspondre à chaque volume conoïdal un vecteur supporté
par l'axe (DJ correspondant, d'origine A* et d'intensité m*,
l'axe des surfaces coïncide avec le support (A) de leur résultante.

De tout ceci résulte encore une intéressante conséquence: on
sait que, dans le cas général, les volumes conoïdaux WD et Wa
relatifs à un même contour (C) et à deux axes parallèles (D)
et (A),

2 (WD — Wa) a.d

$ étant la distance des axes, <7 la projection du contour (C) sur
le plan passant par (A) normalement au plan des axes (A. Buhl,

löc.cit.,, page 60).
Dans le cas actuel, WA est nul, et

WDf- £. 8,-. cr,
s

d'où l'on déduit, d'après (14),

S m.8,. =0V V &

„ En particulier, lorsque les mi sont égaux;-

0 ; :
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plus particulièrement encore, en supposant les axes (D;) dans

un même plan, l'axe des conoïdes y est situé et

S m. S
• 0

b u

ai étant le même pour tous ces axes.
12. — Axes parallèles à un même plan. — Prenant ce plan

pour plan des xy,

X. — cos a, a. sin a. v. 0
b b * b b b

d'où

A — S m- sin2 a- k! rr S cos2 a7. A" =r A -f- A' E/zi.
fr & b b b

B — B' 0 B" rr: — S m.sina.. cos a,-b b b

C c C"

Le système à résoudre est alors

dx ddzAx + B"j f C &' x + A 'y + C' — A" z + C" '

Les surfaces intégrales satisfont à:

[8_
S "1

XA"
1

Y17' J

les nouvelles variables étant définies par la substitution
orthogonale

tX —(A' — A -f- 8) —

T Y — ~ (A'— A — 5) .r, — B"ri
C"

Z *+jr.
avec

~ (A' — A 4- S)2 + B"2

82 (A' — A)2 + 4B"2

A'C — C'B"
Xx — X -f- AA' — B"2

AC — CB"
i AA' — B"
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On parvient encore aux mêmes surfaces (12), pour lesquelles

a seule changé la situation dans l'espace: le dernier cas examiné
au § 12 est contenu dans celui-ci, de même que celui du § 5.

13. — Les surfaces que nous avons rencontrées en (8) et (12)

(8)

z — xy f (x'~l yk+i) (12)

rentrent toutes dans un type remarquable d'équation générale

• <ï>(z) xy F (xmy'1) (17)

et qui vérifie l'équation différentielle linéaire

pnx — qmy<p (18)

avec n)Q(z) e
J *{z)

ou inversement
f \tv>

y(z)

La considération de cette équation (18) met en évidence une
propriété caractéristique des surfaces intégrales, quant à leur
plan tangent, propriété qui peut, indépendamment des exposés
actuels, être prise pour définition de (17). Pour l'établir, il suffit
de comparer l'équation (18) avec celle

Z — z z=z p (X —x)-f-# (Y — j)

du plan tangent en M (#, y,'z)- On voit alors que, si nous faisons

correspondre à M le point P de ce plan ayant pour coordonnées,
en projection sur 0 xy,

j X —— (1 —|— 72 • X *

| Y (1 —- m.la projection p de P est obtenue à partir de (#,y, 0) par de

simples dilatations de coordonnées, en particulier par homo-
thétie lorsque : ^A»+ m ass 0
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La cotedeP apour expression

Z pV=z+9 (z),c'est-à-dire une fonction de la seule cote du point de contact M.

Pour les surfaces (8), en lesquelles

n-- 1 m — 1

le point p vient se confondre avec 0, ce qui conduit à la
définition déjà donnée des surfaces de Jamet.

Enfin, si
<P(z) z

d'où
Cp (z) (n— m) z

il existe un rapport constant entre les cotes Z et z des points
P et M:

Er =1 + «-,».
M M

Dans le cas des surfaces (12), ce rapport est égal à 3, donc

indépendant de 1. D'où ce résultat:
Quel que soit le rapport des volumes la cote du point

M (#, ?/, z) d'une surface intégrale est égale au tiers de celle du
point [(2 + 1) x,(2 — A) y, ...] du plan tangent- en M.

Lorsque A varie, on vérifie facilement que le point p décrit
une droite, symétrique de 0 men direction par rapport aux
axes Orr, Oy et passant par Thomothétique de m par rapport à

O dans le rapport 2.

Considérons maintenant les surfaces d'équation

s xy F y (19)

Nous allons montrer qu'elles constituent un type général dont
les lignes asymptotiques s'intègrent par quadrature.

Posant

de sorte que

a —

à u dx dr
— =: ni.p n. ~ (20)a x y
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on trouve:

r m.— R
x

s S (m)

trc — T

R, S, T, étant des fonctions de la seule variable Les asympto
tiques sont obtenues en intégrant l'équation

w — R («) dix2+ 2 S (u) .dx.(u) dj2 Ô
0? J

de laquelle on tire

dy-—S (u) + ys2 (m) — m/î R (m) T (u)

x/i — I (M)
J

ÔU

j ' da: ~~ | U2 (M)

x dy U (u)
TT/.. • (21)

D'après (20),
dx du

x u[m -j- U (m)]

et, en portant dans (21) où les variables sont alors séparées,

r du

x C, e

Cette unique quadrature fournit les lignes cherchées^.
Nous terminerons cette étude par la propriété suivante:

Lessurfaces (19) se transforment les unes dans les autres par
transformation polaire réciproque dont la est

le paraboloïde de révolutionx2-j- y22s

i Cette propriété d'intégrabilité par quadrature s'étend d'ailleurs au cas où

<i>(s) «z + ß

Il s'agit ici d'une propriété générale des surfaces: lorsque les asymptotiques d'une
surface

2 /
s'obtiennent par quadrature, il en est de même des surfaces

«c + p f(xty).
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Effectuons en effet sur (19) la transformation de Legendre:

1 X =3 x,Y y
Z — — z px;

Il vient, pour équation des transformées,

Z XY G

étant posé

G (Xm Y")G (xmyn)G (m) F + (m + «)«P'W »

ce qui démontre la proposition.
En particulier, lorsque

F u)-f-(m -j- n) fiF' (//) F (u)

les surfaces se transforment en elles-mêmes. Ceci a lieu dans
deux alternatives:

1] lorsque
F' (u) 0

c'est-à-dire pour les paraboloïdes équilatères

xy — Xz ;

2] lorsque
m —— n

c'est-à-dire pour des surfaces de Jamet

ce dernier cas étant assurément le plus intéressant.

Strasbourg, mars 1925.
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