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240 . M. WINA NTS

partlcuhers du probleme bien connu des" trajectoires orthogonales,
. cas auxquels nous comparerons ’ensemble des deux systémes
de lignes de courbure de certaines surfaces. Nous nous occuperons
ensuite d’ombilics’ relativement simples, et nous examinerons
enfin les ombilics spéciaux, que nous avons mis en évidence en
1922, dans un mémoire qu’a publié L’Enseignement mathéma-
tique (22¢ année). |

TRAJECTOIRES ORTHOGONALES.

«) Si les axes coordonnés sont rectangulaires, les paralléles
a Vaxe des z (y = C;) ont comme trajectoires les paralléles a
I'axe des y (x = C;). Par chaque point du plan, il passe une et
une seule droite de chacune des deux familles. A distance ﬁme
aucun point réel du plan ne se singularise.

B) Les droites issues de I’origine ou du péle (w = C;) ont comme
trajectoires des circonférences concentriques (p = G,). Par chaque
point réel du plan il passe une et une seule des circonférences
considérées; par tout point distinct.du pdle, on ne peut mener
qu’une seule droite de la famille envisagée. Mais toutes les droites
de cette famille concourent au pole qul nous apparait ainsi comme
un point singulier. .

v) Soient les différentes circonférences passant par deux points
ﬁxes .
a® + g + my— a® =

l’,'équation " différentielle -des trajectoires orthogonales ‘péut
s’écrire

1
oY — )=+

Cest une equatlon linéaire du premier ordre dont voici 1'inté-
grale générale:
: : 2> 4+ y? — nzx + a® =

et l'on retrouve un résultat classique (Cf. Cours de Géométrie
- analytique plane de Falisse-Gob;. Bruxelles, Lebégue, 1912;
'pp. 208-212). Par chaque point du plan padse un et un seul
cercle n; tous ces cercles forment un faisceau dont les points
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limites de Poncelet sont les deux points fixes ou se croisent tous
les cercles m (Sections conigques de Salmon); par tout point du
plan, distinct des points limites, passe un et un seul cercle .
Les deux points limites sont donc deux points singuliers.

8) Considérons enfin le cas si bien connu des coniques homo-
focales; si ’on suppose A2 > ¢ > u? > 0, les ellipses
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ont pour trajectoires les hyperboles
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par chaque point réel du plan on peut mener une et une seule
ellipse A, une et une seule hyperbole . 11 n’y a que deux excep-
tions: en chacun des points y = 0, x = -k ¢, Uellipse et I’hyper-
bole dégénérent en une seule et méme droite. Ces deux points
sont singuliers, mais présentent une singularité tout a fait
différente de celles que nous avons rencontrées aux paragraphes

3) et V)

OMBILICS ET LIGNES DE COURBURFY.

1. — Plan et sphére. Pour ces deux surfaces le probleme des
lignes de courbure ne prend un sens précis que si 'on adopte
pour ces lignes la définition que nous avons rappelée plus haut.
Alors chaque ligne de la surface est une ligne de courbure, et
tous les points sont des ombilics. On sait que ce sont les seules
surfaces qui jouissent de cette propriété.

2. — Tore. Toutes les lignes de courbure sont circulaires; et le
tore ne possede aucun ombilic. La disposition des lignes de cour-
bure et leurs relations mutuelles rappellent la configuration )
dont 1l s’est agi plus haut.

3. — Hyperboloide de révolution. Tout se passe ici comme pour
le tore, a cela prés que, si les lignes de courbure de I'une des
familles sont encore circulaires, les autres sont hyperboliques.

4. — Paraboloide de révolution. Les lignes de courbure des deux
familles, qui sont respectivement des paraboles et des circonfé-
rences, rappellent la disposition () des coordonnées polaires du
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