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COMBIEN PASSE-T-TL. DE LIGNES DE COURBURE
PAR UN OMBILIC ?

PAR

Marcel WinanTs (Liége).

SomMAIRE: Introduction. — Quelques cas particuliers du probléme des
trajectoires orthogonales. — Réponse a la question proposee. —
Conclusion.

INTROD UCTION.

Pour la généralité du probléme nous considérerons une ligne
de courbure comme une telle ligne d’une surface que les normales
en ses différents points forment une surface développable. Les
lignes de courbure se distribuent alors en deux familles: les lignes
de T'une de ces familles sont les trajectoires orthogonales des
lignes de I'autre famille; par chaque point de la surface, qui n’est
pas un ombilic, il passe une et une seule ligne de chacune des deux
familles, et ces deux lignes de courbure se coupent & angle droit.

Mais qu’arrive-t-il en un ombilic ? Cette question n’est pas
traitée explicitement dans les ouvrages courants d’Analyse.
Dans le Calcul différentiel de Joseph BERTRAND et dans le
Traité d’Analyse de M. E. Picarp elle n’est qu’effleurée. A
notre connaissance HoUEL seul s’en occupe: dans son Calcul
infinitésimal (Paris, 1879) il y consacre un paragraphe parti-
culier (n° 704); ses assertions sont d’ailleurs inexactes, ou tout
au moins trés incomplétes.

Nous ne prétendons pas résoudre la question d’une maniére
définitive, mais seulement en montrer toute la difficulté; nous
serons suflisamment heureux si nous y apportons une légeére
contribution. Nous allons rappeler trés brievement quelques cas
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partlcuhers du probleme bien connu des" trajectoires orthogonales,
. cas auxquels nous comparerons ’ensemble des deux systémes
de lignes de courbure de certaines surfaces. Nous nous occuperons
ensuite d’ombilics’ relativement simples, et nous examinerons
enfin les ombilics spéciaux, que nous avons mis en évidence en
1922, dans un mémoire qu’a publié L’Enseignement mathéma-
tique (22¢ année). |

TRAJECTOIRES ORTHOGONALES.

«) Si les axes coordonnés sont rectangulaires, les paralléles
a Vaxe des z (y = C;) ont comme trajectoires les paralléles a
I'axe des y (x = C;). Par chaque point du plan, il passe une et
une seule droite de chacune des deux familles. A distance ﬁme
aucun point réel du plan ne se singularise.

B) Les droites issues de I’origine ou du péle (w = C;) ont comme
trajectoires des circonférences concentriques (p = G,). Par chaque
point réel du plan il passe une et une seule des circonférences
considérées; par tout point distinct.du pdle, on ne peut mener
qu’une seule droite de la famille envisagée. Mais toutes les droites
de cette famille concourent au pole qul nous apparait ainsi comme
un point singulier. .

v) Soient les différentes circonférences passant par deux points
ﬁxes .
a® + g + my— a® =

l’,'équation " différentielle -des trajectoires orthogonales ‘péut
s’écrire

1
oY — )=+

Cest une equatlon linéaire du premier ordre dont voici 1'inté-
grale générale:
: : 2> 4+ y? — nzx + a® =

et l'on retrouve un résultat classique (Cf. Cours de Géométrie
- analytique plane de Falisse-Gob;. Bruxelles, Lebégue, 1912;
'pp. 208-212). Par chaque point du plan padse un et un seul
cercle n; tous ces cercles forment un faisceau dont les points
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