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COMBIEN PASSE-T-IL DE LIGNES DE COURBURE

PAR UN OMBILIC

PAR

Marcel Winants (Liège).

Sommaire: Introduction. — Quelques cas particuliers du problème des

trajectoires orthogonales. — Réponse à la question proposée. —
Conclusion.

Introduction.

Pour la généralité du problème nous considérerons une ligne
de courbure comme une telle ligne d'une surface que les normales
en ses différents points forment une surface développable. Les
lignes de courbure se distribuent alors en deux familles: les lignes
de l'une de ces familles sont les trajectoires orthogonales des

lignes de l'autre famille; par chaque point de la surface, qui n'est

pas un ombilic, il passe une et une seule ligne de chacune des deux
familles, et ces deux lignes de courbure se coupent à angle droit.

Mais qu'arrive-t-il en un ombilic Cette question n'est pas
traitée explicitement dans les ouvrages courants d'Analyse.
Dans le Calcul différentiel de Joseph Bertrand et dans le
Traité d' Analysede M. E. Picard elle n'est qu'effleurée. A
notre connaissance Hoüel seul s'en occupe: dans son Calcul
infinitésimal (Paris, 1879) il y consacre un paragraphe particulier

(n° 704); ses assertions sont d'ailleurs inexactes, ou tout
au moins très incomplètes.

Nous ne prétendons pas résoudre la question d'une manière
définitive, mais seulement en montrer toute la difficulté; nous
serons suffisamment heureux si nous y apportons une légère
contribution. Nous allons rappeler très brièvement quelques cas
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particuliers du problème bien, connu des'traj ectoires orthogonales*
cas auxquels nous comparerons l'ensemble des deux systèmes
de lignes de courbure de certaines surfaces. Nous nous occuperons
ensuite d'ombilics relativement simples, et nous examinerons
enfin les ombilics spéciaux, que nous avons mis en évidence en
1922, dans un mémoire qu'a publié VEnseignement mathématique

(22e année).

o
'
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Trajectoires orthogonales.

a) Si les axes coordonnés sont rectangulaires, les parallèles
à l'axe des x (y — CJ ont comme trajectoires les parallèles à

l'axe des y {x C2). Par chaque point du plan, il passe une et
une seule droite de chacune des deux familles. A distance finie
aucun point réel du plan ne se singularise.

ß) Les droites issues de l'origine ou du pôle (<o C±) ont comme
trajectoires des circonférences concentriques (p C2). Par chaque
point réel du plan il passe une et une seule des circonférences
considérées; par tout point distinct .du pôle, on ne peut mener
qu'une seule droite de la famille envisagée. Mais toutes les droites
de cette famille concourent au pôle qui nous apparaît ainsi comme
un point singulier.

y) Soient les différentes circonférences passant par deux points
fixes:

#2 +y2+ my 0 ;

l'équation différentielle des trajectoires orthogonales peut
s'écrire

• .W-L^ -* + 7;
c'est une équation linéaire du premier ordre, dont voici l'inté*
grale générale: x2+ y2— n+ a20 ;

et l'on retrouve un résultat classique (Cf. Cours de Géométrie

analytique plane de Falisse-Gob;. Bruxelles, Lehègue, 1912;

pp. ;208-212). Par chaque point du plan pa&se un et un seul
cercle n;tousces cercles forment un faisceau dont les points
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