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QUELQUES MÉTHODES DE GÉOMÉTRIE INTRINSÈQUE
#

PAR

C. D. Rice (University of Texas).

Nous nous proposons de montrer dans cette Note comment
l'introduction de certains vecteurs-unité dans les méthodes de

la géométrie intrinsèque permet de simplifier l'étude des

propriétés des surfaces et des courbes tracées sur les surfaces.
Le lecteur se rendra compte de l'avantage que présente l'emploi
de ces vecteurs sur les méthodes des coordonnées rectangulaires
et sur l'usage des paramètres différentiels. Quelques-uns des

résultats obtenus seront tout à fait généraux et comprendront
comme cas particuliers des propriétés bien connues.

En considérant sur la surface des lignes non rectangulaires,
nous établissons des relations générales relatives à deux courbes
tracées sur une surface. Pour terminer, nous ajoutons quelques
théorèmes bien connus permettant d'illustrer la valeur des

méthodes développées.
1. Soit une surface donnée par

x •=.x(u,p) (1)

où x est un vecteur mené de l'origine 0 à un point P de la
surface. Le vecteur xest donné au moyen de deux variables
scalaires u et c. Lorsque uete sont fonctions d'une seule variable

.s, le point P décrira une courbe sur la surface. Dans cette
étude, la quantité s représentera la longueur de l'arc de courbe
mesurée à partir d'un point arbitraire. Différentes courbes sur la
surface seront indiquées par S&, Sr ou Sx, S2) etc.

Lorsque la courbe est déterminée par Sfe, la dérivée est
dsh

un vecteur-unité le long de la tangente à la courbe au point P.
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Soit a. le vecteur-unité normal à la surface au point P. 11 est
aussi fonction de u et v et, le long de la courbe S& nous pouvons
aussi prendre la dérivée

k
Posons pour abréger:

dxdx da
— dTr' ~di2'tti ~ lûi '

En désignant, par S le symbole du produit scalaire de deux
vecteurs, on peut écrire

Sxrxr — 1 S aa— 1 S aar— 0 0 S — 0 (2)

/

Par dérivation, on voit que

_ dx ö.r du ^k dskdu dsk

da da du ^
dv

(3)

ds du dsr öv dsr

En utilisant les relations (2) et (3) on peut facilement prouver 1

que
S arxk^ '

Cette identité est d'une grande importance dans la discussion

1 Démonstration de la relation fondamentale I
/ dadu da dx

Sa. x9 — Sa„x. z= SI;— — — -—21 \du dsx dv ds^jydu 8«2 öi> 8ss

/ö« Su dii dx dv
— b TT TT" + TT TT" TT. "TT" +duös2èv §

Lg
daö#

g
da ôxl V du dv 8 m "j

duèv öi> duJ [ d-sx 8s2 dsx ö.s2J

Mais d'après (2) on sait que

c bx.n \ c nS#— m 0 et ba— 0
du dv

et, par suite, on voit que

„ dadx, d2xda dx d2x AS— h .Sa—-«- =0 et S \~ Sa 0
dvdu dudv du dvdu

et par conséquent

_ da dx • dadx ~ r d2x d2x 1
S — S :=- Sa ——

dv du du dv l_övö« Ö/zövJ

D'où SaiÄ2 ~Sa23c1 0.
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des relations concernant les courbes tracées sur une surface et,
en s'y référant, dans la suite, nous l'appellerons, la relation
fondamentale de la géométrie intrinsèque.

A la place de l'expression désignée habituellement par E,F, G,

nous ferons usage des suivantes

IIr Sarxr Tk Saakxk — Sarxs Sasxr
< (4)
f Krs S aarCls' Ark$«ara'k ~ *

On remarquera que la quantité Hr est l'expression habituelle
de la courbure de la section normale au point P et que Tk est la
torsion géodésique de la courbe en ce point. La signification de

Brs, Arfe et Krs sera donnée plus tard.
Lorsque les courbes Sr et Sk font entre elles un angle 0, les

relations suivantes sont évidentes

Sxr%k COS 9 S axrXk~s^li ®
' — a s*n 8

> (5)

V étant le symbole du produit vectoriel.

Pour 0 y, on a

S xrxk— 0
> Sa.rrxk — 1

>
V ~ a - (6)

En parlant de l'angle (XrXfe), il est convenu que l'angle est
formé en mesurant de Xr à Xkdans le sens positif.

2. Relations entre deux courbes tracées sur une surface. — Soient
deux courbes Sr et Sk se coupant en formant un angle (Xr Xk) 0

et soit également un angle ;(Xr Xi) —Alors1
S arxk~~ xkSaxrxi»cl après (6)

Sxkxr S aarx^-f-S

— cos ö Sar xr — sin 9 Tr puisque xf, V.x^. a

— Hr cos 6 — Trsin 9

De même

^akxr COS ® + '^k s,n ®
* (8)

Dans cette étude, on utilisera les identités vectorielles suivantes!
dSabc aSdbc + bSadc + cSabd (a)
S YpqYrs— SprSqs— SpsS (5)
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De (7), (8) et I résulte la relation importante

4 (Hr - Bk) cos 0 (Tr + rk) sin Ö (9)

Puis, pour les deux courbes SrSfe,

S aarxkS\xrx.Yarxk puisque a Yxrx- (10)

— SarxrSx.xk—S,Hr sin 6 -f- cos 6 puisque x. Y

~ Hr sin 0 -j- Tr cos 0

De même
S aakxr— s*n ® "P cos ® • (^)

\

D'après (10) et (11) on voit que

Ark S aarxk— Saakxr (Hr -f- H^) sin 0 + (Tr — Tk) cos 0 (12)

Pour ûne courbe Sr on peut trouver que

S arar SararSaxrxid'où-angle (xpx^ (13)

SarxrSaarxé + SarxiSaxrar

H Sa Yxga — T S puisque xi Yaxr

=r H Sa.t:-4- T Saar,x„r r r 1 r r r '

H* + T*

Puis
sin 0 Sarar SararSaxr Xk (14)

SarxrSaarxk + S

HrS aarxk"I"d'après I

ErSaarxk-f- SxrxrSaakar +
I lr(Saarxk— — Saarak

s *

— HrArk K rk

et de (13) et (14) on obtient

sine (H* + T°) HrArfe <t5>

On voit également que

KrÄ Swrah,
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OU
sin 6 K/>fe — SY xrY arpuisque a sin 6 — '

m SarXrS akTk—SarXkSakXr >

sin ô Krk H/tHfe — (S af.xk)2,d'après l (16)

Les relations (9), (12), (15), (16) sont tout à fait générales et

contiennent de nombreux cas particuliers. On en déduit des

relations importantes relatives aux deux courbes.
3. Cas particuliers de (10), (12), (15) et (16).

Lorsque l'angle (Xr Xk) > on trouve

T;. + Tfe 0 (99

Hr + Hfc (129

H72 + T,2 (159

— HrH^ — T2 puisque dans ce cas .r^ — \axr (16')

Lorsque les deux courbes Xr et X^ sont à angle droit et sont
situées également le long de lignes de courbure, on sait que
Tr Tfe 0, et dans ce cas les quantités Hr et Hk sont généralement

données par
1 l

H" TT • H* ÏT;r h

Dans ce dernier cas (9') (12') (15') (16') deviennent

Tr 0 Tfc 0 (9">

Ku ^ + r - 2Ä (12")
"/ nk

R

1

~2
1/1 I \ 1 1

" Ü K/B,
<15"'

' %rk w
Dans cette dernière formule, nous désignons par k la courbure

de Gauss et par h la courbure moyenne.

L'équation (15") montre que satisfait à la relation

R2
~~ 2/*IT k~0
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iet nous pouvons montrer également que satisfait à la même

équation.
4. Dequelques invariants. — a) Soient deux courbes SiS^

tracées sur la surface et passant par P en faisant un angle
(Xx X2) <p, et soient S3 S4 deux autres courbes passant par le
même point et formant un angle (X3 X4) Alors

sin y S aaza±S Yx1x2Ya3aé,puisque ~ a sin 0 (18)

SazxtStf4.r2— Stf3.r2,
Siq.rg Stf2#4 — Srt2XgS«1 xé d'après I

— SVx3x^Ya1a2
sin 0 S aaxa2

Lorsque 9<p, cette relation devient

S aa3aéS (19)

Par conséquent, Krs est un invariant absolu pour deux courbes
quelconques se coupant sous le même angle.

Si, de plus, les courbes Sx et S2 dans (19) sont des lignes de

courbure, alors 9 — <p j et d'après (16") /

S ao3aé (20)

où les courbes S3S4 sont deux courbes quelconques sur la
surface se coupant à angle droit.

Revenant maintenant à (18), soient Si S2 deux courbes à

angle droit, par (20) on a Saa1a2 k et, par suite,

Kg4 — Saa3a4sin 0

où l'angle (X3 X4) =' 9. Ceci peut s'écrire

_ S gogOt_SVy3.r4 Va3a4 _ Sa, Sa^ — Sa3 .r4 Sa4.r3
siu 0 sin2 0 sin2 0

_ HäH4 - (B34)a

sin2 0 -

Cette dernière forme est semblable à celle de Gauss dans la

notation paramétrique w, v. Dans le cas particulier, où

elle devient
H3H4-'i;r (210
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b) Considérons maintenant les mêmes quatre courbes (a).

Nous aurons

sin y (Sööf3^4 — Srt«4.r3) SVxl x2Va3.r4— SV^^V^orj (22)

Sa3xx S.r2 x4 — S«3.r2Sxtx4 — Sa4.rt St2^3 -f
Sftj XgSXg OC^S#2 *^3 X4SftjS.^

2 *^3 "I- ^^2 ^'^1 3
^ âpres I

SV:r3a:4 \a1x2— S\œ,xé\a2xl,
— sin G (S aaxx2— S«a2xi) »

sin fA34rrr sin 6 A12 (23)

Ce résultat montre que Ark est un invariant absolu pour deux
courbes quelconques passant par P et se coupant sous un angle
constant.

Lorsque 9 ~,cette relation devient

A34 — sin 6 — S

et si, de plus, les courbes S1 et S2 sont des lignes de courbure,
nous aurons d'après (12")

A34 2 hsin 6 (24)

5. Grandeurs géométriques relatives à deux — Soient
deux courbes sur la surface, se coupant en un point P et formant
un angle 9.Les deux identités (12) et (24) fournissent la relation

2h sin G (H;, + Bk) sin G -f (T, — Tfe) cos G (25)

Nous pouvons écrire (9) sous la forme

0 (H, _ Hft) cos 6 - (Tr + sin G (9)

En éliminant Tk entre ces deux relations, nous trouvons1

H;. cos 2G — Tr sin 2G -f- 2 sin2 G (26)

et en éliminant Hfe, on obtient

Tfe — Hr sin 2G -J— Tr cos 2G — h sin 2 G (27)

i Voir Forsyth, Differential Geometry, p. 231. Le lecteur notera la différence
entre la méthode employée et celle qui est exposée ici.
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D'autres relations entre les deux courbes peuvent être trouvée»
en utilisant (17) avec (25) (9) (26) (27).

6. Dérivées du second, ordre.— Si l'on prend les dérivées successives,

on peut se servir des abréviations suivantes

Ö / bx \— x\* — 1 I » • ' 1 — 1A O \ At« / X r» "A r» Aö \n '11ÖS1 ds2 1J
ÖSg \ b.S'j / 11

En général x12n'est pas égal à x21. Les vecteurs dérivés par
dérivations successives sont très importants; mais lorsque les
courbes S1S2 ne sont pas rectangulaires, l'évaluation de ces
vecteurs au moyen des vecteurs x± etc. est plutôt compliquée»
Pour cette raison, dans cette discussion, les courbes Si S2 seront
considérées comme rectangulaires dans ce qui suit.

11 est nécessaire maintenant d'introduire une nouvelle constante

relative au point ; à savoir
' Jr =' S axr.(28)

Cette constante est l'expression bien connue de la courbure
géodésique de la courbe Sr.

Il est bon de noter la façon suivante d'exprimer etc.,
au moyen des dérivées du second ordre

Hj — — Sa#n puisque 0

H2 — S#2 oc2 ~ — S#d"22 » S<z«r2 — 0

Tj =r S aa1x1S x2ai— S«^r21 puisque

12 i flg — »

(29)

Aussi quand l'angle — nous pouvons éorire

x9 Vax, .r. — Vax»" 1 1 *
(30V

0 x2)x S#2 xn + S^J x2let o —: (S.^ x2)2 S«r22 + Sx2 xl2

et par suite
Jj Sax^x^ =zlSX2Xu

Ü2 i • SûÂ
2 X22ili S#2 *

Comme Sx^ — Sa^, il ne sera donc pas nécessaire d'avoir
les deux constantes et T2 pour des courbes rectangulaires,
mais à la place nous utiliserons

T — T, Ts (32)
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Les évaluations suivantes sont utiles

xu xxl%axxx2puisque &ax1xi '1 (33)

«Soq ^*2 arn aqSaoq, x2 -f- x2 Saoq xn
— aSaxn -f-

— — H j a—j—Jj x2•De même
3. 22 -- -H

2 ß J2 ^j i

'^12 ^ "t" **2 '

x21Ta —

Des deux dernières relations, nous tirons

Xl2 ^'21 —• **2 ^2* (3"*)

Cette identité montre que l'ordre de difïérentiation n'est pas
interchangeable, comme c'est le cas dans la difïérentiation
ordinaire avec variables scalaires. Ce résultat peut être facilement
généralisé sous la forme

d2/?i à2 m
Jlm1 + J2m2 (35)

06'j Ö52 Ö.V2 ö-sq

où m est une fonction scalaire ou vectorielle des variables
u et v 1.

Lorsque Sx et S2 sont deux lignes géodésiques à angle droit, les
identités (33) donnent

.r21 Ta et .x'22 — H2a
Par suite

8*1 [.r212 — x221] Sx1 a-f T -f- ^ + H2 —
Ö52 ÖSj Ö5J

HgS^qaj -f" TSflgtfj

H2 H, - T»

OU

Q r q ri / ^ rp ^^ *
öH- Öß

S-r2[.r121 #112] — r2\aTZ b V b a~ \~ Hj
ÖÄ1 Ö5, ÖÄ2 Ö.S2

H1Sa2o?2 + TSa1.r2

HxH2 — T2

1 Voir Geometria Intrinseca, par CesÀro, p. 112.
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Ces résultats fournissent un cas particulier du symbole à

quatre indices de Riemann-Ghristoffel dans un espace à trois
dimensions.

Les relations de Codazzi pour Hx H2 et T se forment facilement
en se servant de cette notation. Ainsi,

ôH ôT
+ — S«,j x, + Sa, x,2 — Sa2,x, — Sa2x„ (36)

Sx, (a,2 — a21) + Sa,x,2 — Sa2x„

— '-f- J2 -TJj ^1^2 '

H, J, - 2ÏJ2 - J, H2

— 2TJt + J, (H) — H3)

De même

Sf+S 2TJ'+J^H--Hf- <37>

A ces relations, Cesàro a ajouté

— ___ -r =—S.r9^tl — Sa«#,« d'après (31)
öäj ös2

2 11
ös,

1 22
ös2

2 11
ös, r \ / v

Sxnxn+ S*2;r112 — S.r21 x12— S

—— S-^2 (*^112 "*121 "I" ®( H2 05 ^2"*l) H, öt -}- r

— S (Ta -|- J2 .r2) (Ta — »

-f- ^2^12) ~î~ ^2^1 — T2
»

JJ + JJ-+ HjH, — T« *
f

7. Exemples.— Nous ajouterons quelques exemples pour
montrer la facilité avec laquelle des théorèmes bien connus
peuvent être établis par le moyen de cette notation.

a) Supposons l'angle (X1X2) =-| et l'angle (X^X,.)

nous aurons

xr ~ .r^S axtx2z=zx1Saxr.r2-j-

xx cos 6 r{- x2sin6

<

Hr. •= S arxrSar(#, cos 0 + %% sin 6)

S#r (a, cos 6 * d'après I
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Ceci montre que lorsque (XjXg) sont à angle droit

a z=z ax cos 0 ~p a0 sin 0

&a1;r/, — a? Stfuq ,r9 (/>)

q- B«j '.r2 Sf/jq st

— Ig cos 0 — T, sin 0

De même

S^2<*'/:, H2 sin 0 — Tj cos 6

Multipliant la première de ces relations par cas 6f la seconde

par sin 9 et additionnant, nous trouvons

if, — S.rr (a1 cos 6 -j- n0 sin 0) lg cos2 0 —T, sin 2 0 -f- II., sin2 0

et .lorsque Sx et S2 sont des lignes de courbure passant par le point,

cos20 sin20
H,.

if, — Saa x — SY.rt ,r2 Yar x• (c)

=: SVq ï'2 V (a% cos 0 -j- a9 sin 0) (,i1 cos 0 -f- .*•„ sin 0)

— (Kg cos 0 — T sin 0) sin Ö — (— T cos 0 -f- H., sin 0) cos 0

- (Ig -f- H2) sin 2 0 -f- T cos 2 0

et, quand Sx et S2 sont des lignes de courbure,

T- 'V, ~s;)si°2"

8. Courbure totale. — Soit xx le vecteur-unité pris le long de la
tangente à une courbe tracée sur la surface et soit a le vecteur-
unité normal à la surface. Le vecteur 1 perpendiculaire aux
deux précédents est défini par

À — V.Cj a

La dérivée de X par rapport à «9! donne

X, V.r3 ] a -j- Yx^a^

L'Enseignement mathém., 'M* année, 1920 cl; 1925. lf>
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totale au point. En utilisant nos constantes au point, nous avons

Ya1x1z=z #Tj et — *

par suite
^2 — CLFj—J— Jj

g2SXjXj S(— aT, + ^J,) (- aT, + JJ

tj + J;

De même, en dérivant a, nous trouvons

da dada
"

dst da dst
Ä

dsx

où da représente un élément d'arc dans la représentation sphé-
rique des vecteurs a obtenue en traçant tous les vecteurs égaux
à a à partir d'un point commun 0. Le vecteur « est un vecteur-
unité le long de la tangente à la représentation sphérique. Alors

Tj =: -^-Sa -^-SaX
as*

m da «
1, —— sin 0

as,
où 9 est l'angle (Xxa).

Les théorèmes et méthodes développés dans cette étude
indiquent suffisamment la façon suivant laquelle un exposé complet
de la géométrie intrinsèque pourrait être fait. Ce qui a été dit
suffit, nous l'espérons, pour illustrer la valeur des théorèmes et
des méthodes.

Genève, juin 1925
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