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QUELQUES METHODES DE GEOMETRIE INTRINSEQUE

PAR

C. D. Rick (University of Texas).

Nous nous proposons de montrer dans cette Note comment
Pintroduction de certains vecteurs-unité dans les méthodes de
la géométrie intrinséque permet de simplifier ’étude des pro-
priétés des surfaces et des courbes tracées sur les surfaces.
Le lecteur se rendra compte de I’avantage que présente I’emploi
de ces vecteurs sur les méthodes des coordonnées rectangulaires
et sur l'usage des parameétres différentiels. Quelques-uns des
résultats obtenus seront tout & fait généraux et comprendront
comme cas particuliers des propriétés bien connues.

En considérant sur la surface des lignes non rectangulaires,
nous établissons des relations générales relatives a deux courbes
tracées sur une surface. Pour terminer, nous ajoutons quelques
théorémes bien connus permettant d’illustrer la valeur des
méthodes développées.

1. Soit une surface donnée par

x = x(u, v) , (1)

ou z est un vecteur mené de I'origine O a4 un point P de la
surface. Le vecteur z est donné au moyen de deux variables
scalaires u et ¢. Lorsque u et ¢ sont fonctions d’une seule varia-
ble s, le point P décrira une courbe sur la surface. Dans cette
étude, la quantité s représentera la longueur de ’arc de courbe
mesurée a partir d’'un point arbitraire. Différentes courbes sur la
surface seront indiquées par S, S, ou S;, S,, etc.

Lorsque la courbe est déterminée par S, la dérivée iﬁ est

.Sk
un vecteur-unité le long de la tangente 4 la courbe au point P.
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Soit a le veoteur-unité normal & la surface au point P. 1l est
aussl fonction de u et ¢ et, le long de la courbe S nous pouvons

hd . ’. * ’ da
aussl prendre la dérivée —.

dsy,
Posons pour abréger:
. dx . dx da
=g T s, N T,
r 2

En désignant par S le symbole du produit scalaire de deux
vecteurs, on peut écrire |

Sx,x, =1, Saa =1, Saa, =0, Sada =10, Sax, =0. (2

‘Par dérivation, on voit que

dx o du dx dv

X, = = e e
k ds, ou ds; ' v, ds; :
(3
0 — da __ da du | da dv
LA ds, T du ds, ov ds, '

En utilisant les relations (2) et (3) on peut facilement prouver !
que ’ o I
Sa,x, = Sa,x, . I

Cette identité est d’une grande importance dans la discussion

1 Démonstration de la relation fondament‘alé I

Sa, x Sa.x. — S da du da dv\[dx du dx dv
12 L ou ds, m.g}: du Bs, 3¢ —5_3_2

da du du dv\/ox du dx dy
"S<az§;;+s;‘a';;)<@zq+a: T)

: da dx da ox du dvy dv du
= |S— — — S — — —_ .
du Y ov du || ds, 3s, ds, Os, o
Mais d’apreés (2) on sait que :
' dx : Y
Sa— = 0 et Sa— = 0
ou ‘ oy
et, par suite, on voit que
da dx 2 . .0a dx oz
S — — Sa - = 0 et S — — Sa powem. ,
ov ou + ou dv 4 _ ou oy + ovou .
et par conséquent : o -
. da dx . da dx 2x 2
S———=8S— — = Sa —_— .
ov ou ou oy . v ou ooy

D'oll Sa;xy— Sagx; = 0.
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des relations concernant les courbes tracées sur une surface et,
en s’y référant, dans la suite, nous I'appellerons, la relation fonda-
mentale de la géométrie intrinséque.

A la place de I’expression désignée habituellement par E, F, G,
nous ferons usage des suivantes

H,, p— Sa',x,_ , 1,{ — Saakxk , B,_S — ba,_xs — ba‘cxr ,

KI,S — Saaras , AL = Saa,,xk — Saakx,_ .
On remarquera que la quantité H, est I’expression habituelle
de la courbure de la section normale au point P et que T} est la
torsion géodésique de la courbe en ce point. La signification de
B,s, Ay et K5 sera donnée plus tard. |
Lorsque les courbes S, et Sy font entre elles un angle 6, les
relations suivantes sont évidentes

Sx,x, = cosf , Sax,x, = sinf , Va, x, = asinf , (5)

V étant le symbole du produit vectoriel.

i

Pour 6 =5, 0n a

S.‘r,r.frk =0, Sar,x, =1, \'x,‘d'k — a . (6)

En parlant de l’angle (X, Xj3), il est convenu que I’angle est
formé en mesurant de X, 4 X, dans le sens positif.

2. Relations entre deux courbes tracées sur une surface. — Soient
deux courbes S, et Sy, se coupant en formant un angle (X, X,) = 6

et soit également un angle (X, X;) = % Alors1

Sa,x, = Sa,x,Sax, x; d'aprés (6) (

N
~

= Sx,x,.Saa,x; + Sx,x;Sar.a, ,
— cos § Sarx,, — sin 6 T,, puisque x, = in a
= H, cos § — T, sinb .
De méme
Sakx,, = ch cos 0 - Tk sin § . (8)

1 Dans cette étude, on utilisera les identités vectorielles suivantes:

dSabc = aSdbc + bSadc + cSabd (a)
SVpqgVrs = SprSqs — SpsSqr . (b)
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De (7), (8) et I résulte la relation importante

(H, — H,) cos§ = (T, + T,) sin . (9)

Puis, pour les deux courbes S, S,

Saa,x, = SVx, x;Va,x; , puisque a = Vx, x;, (10)

Sa,,x,, Sxixk — ermk Sa,,xi ,

H _ sinf 4 cos 6 Saa,x, puisque x; = Vax,

H, sin0 4 T, cos® .

De méme
Saa,x, = — H, sinf 4 T, cos 0 . (11)

D’aprés (10) et (11) on voit que

A, = Saarxk — Saa,x, = (H, 4 H)) sinf + (T, —T,) cosb . (12)

Pour une courbe S, on peut trouver que

Sa,a, = Sa,a,Sax,x; d'ou -angle (x,x) = 5 (13)
' = Sa,x.Saa,x; 4 Sarxi Sax,.a, ,»
= H,_Sa, Vx;a — T Sa.Vax, , puisque x; = Vax,,
= H, Sa,x,  + T, Saa,x, ,
2 m2
. =H 4T, .
Puis
sin § Sa,a, = Sara’, Sa.x,,xk , (14)

Sa,x,.Saa,x, 4+ Sa,x, Sax_a, ,

I

H _Saa,x; 4 Sa,x,Sax.a, d’aprés]l _
H, Saea, x;, + erx,;Saak'ar + Sx,.a, Saxrak

I

I

H,;'(Saa,.xk — S:aak x,) — Saa,a,
'Hr'Afk — K

et de (13) et (14) on obtient
sin (Hp + T7) = H. A, — K, o (19)

On voit également que

-K::k = S“‘;‘r ap, »
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ou
sin 0 K,_h Pt Ser,rkVarak , puisque a sin§ — Vx,_xk ,

= Sa,, erah:rk — Sa,x, Sa, x, ,
sin 6 Kr'k = H, Hk — (Sa,,y(,‘k)2 , dapres [, (16)

Les relations (9), (12), (15), (16) sont tout a fait générales et
contiennent de nombreux cas particuliers. On en déduit des

relations importantes relatives aux deux courbes.
3. Cas particuliers de (10), (12), (15) et (16).

Lorsque Pangle (X, X;) = '%, on trouve
T, + T, =0 (9')
A, = H, + H, (12’)
H + 1) = 11,4, —K, (15%)
K, = H.H, — 1,2 , puisque dans ce cas x, = Vax. . (16%)

Lorsque les deux courbes X, et X; sont & angle droit et sont
situées également le long de lignes de courbure, on sait que
T, = Ty = 0, et dans ce cas les quantités H, et H, sont généra-

lement données par

1
H =
’

[,=0, T, =0 (9%)

A= +p = 2 (12)
r kR

k= ﬁﬁﬁl; (167)

Dans cette derniere formule, nous désignons par k la courbure
de Gauss et par i la courbure moyenne.

L’équation (15’') montre que % satisfait a la relation

,
! S ;
m—2hp k=0 (17)
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et nous pouvons montrer également que Ri— satisfait & la méme
- - R .

équation. A

4. De quelques invariants. — a) Soient deux courbes S;S,
tracées sur la surface et passant par P en faisant un angle
(X; X;) = ¢, et soient S; S, deux autres courbes passant par le
méme point et formant un angle (X; X,) = 6. Alors

sing Saa;a, = SVx,x,Va,a, , puisque Vz,x, = asinb , (18)
= Sa,x,Sa,x, — Sazx,Sa,x, ,
= Sa,r,Sa,x, — Sa,x,Sa,x, , daprésI ,’

SVa,2,Va, a, ,

sin b Saa, a, .

I

Lorsque § = ¢, cette relation devient
Seaa;a, = Saa, a, . (19)

Par conééquent, K;s est un invariant absolu pour deux courbes
quelconques se coupant sous le méme angle.

Si, de plus, les courbes S; et S, dans (19) sont des lignes de
courbure, alors § = ¢ = ; et d’aprés (16") /

Saaza, = ko, (20)

ou les courbes S;S, sont deux courbes quelconques sur la

surface se coupant & angle droit. /
Revenant maintenant a (18), soient S;S, deux courbes &

angle droit, par (20) on a Saa,a, = k et, par suite,

Ky, = Saaga, = k sinb -

o

ou 'angle (X3 X,) = 6. Ceci peut s’écrire

P Saaga, __ SVxyx,Vaga, __ SayxySa,x, — Sazx,Sa,x, o) :
= emb — T en’0 - sin? 0 v |
- H3 EI4 _ (834)2
- sin? 0 )

Cette derniére forme est semblable & celle de Gauss dans la
. . L e : . . T
notation paramétrique z, ¢. Dans le cas particulier, ou 8 = 3,
elle devient o |
| k= HH — 12 21’)
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b) Considérons maintenant les mémes quatre courbes (a).
Nous aurons

sin ¢ (Saazx, — Saayx,) = SVx 2, Vagax, — SV, 2, Va,a, (22)
= Sa,a,Sxy2, — Sa,x,Sx,x, — Sa,x, Sxgxy + Sagr,Sx, ¥,
— Sa,x,Sx,2, — Sagx,Sx, x, — Sa, x,Sx,x, 4 Sazx,Sx,x, d'apres 1

= SVuw,x, Va, x, — SVa,x, Va,x,

|

sin 0 (Saa, x, — Saa,x,) ,
sing A;, — sinf A, . (23)
Ce résultat montre que A,; est un invariant absolu pour deux

courbes quelconques passant par P et se coupant sous un angle

constant.

Lorsque ¢ = Z | cette relation devient

2
A,, = sinb (Saa, x, — Saa,x))

et si, de plus, les courbes S; et S, sont des lignes de courbure,
nous aurons d’apres (12")

A,, = 2k sinb . (24)

5. Grandeurs géométriques relatives a deux courbes. — Soient
deux courbes sur la surface, se coupant en un point P et formant
un angle 0. Les deux identités (12) et (24) fournissent la relation

2h sin0 = (H, + H,) sin6 4 (T, — T,) cos 0 . (25)

Nous pouvons écrire (9) sous la forme
0 = (H, — H) cos b — (T, 4+ T,) sinb . (9)
En éliminant T} entre ces deux relations, nous trouvons?
H), = H, cos 20 — T, sin 20 + 2/ sin?0 (26)

et en éliminant Hj, on obtient

T, = H,sin20 4 T, cos 20 — & siu 2§ . (27)

1 Voir ForsyTH, Differential Geometry, p. 231. Le lecteur notera la différence
entre la méthode employée et celle qui est exposée ici.
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D’autres relations entre les deux courbes peuvent étre trouvées
en utilisant (17) avec (25) (9) (26) (27). |

6. Dérivées du second ordre. — Sil’on prend les dérivées succes-
sives, on peut se servir des abréviations suivantes

o2x d {ox o2k Y
3 = = —\T— , = X4 , = Xy -
$, 08, 0s, 05,08, ‘ 0s, 0s, ;

— X, —
12 -
052

En général z,, n’est pas égal a4 z,,. Les vecteurs dérivés par
- dérivations successives sont trés importants; mais lorsque les
courbes S;S, ne sont pas rectangulaires, I’évaluation de ces vec-
teurs au moyen des vecteurs z; z,, etc. est plutot compliquée.
Pour cette raison, dans cette discussion, les courbes S;S, seront
considérées comme rectangulaires dans ce qui suit.
Il est nécessaire maintenant d’introduire une nouvelle cons-
tante relative au point; & savoir

J, = Sax,z,, . (28)

r

Cette constante est 1’expression blen connue de la courbure

géodésique de la courbe S,.
Il est bon de noter la facon suivante d’exprimer H,T, etc.,

au moyen des dérivées du second ordre

H, — Sa,x;, = — Sax,;, pnisque Sax, = 0
H, —=.Sa,x, = — Sax » Sar, = 0 |
2 2%y 3 22 : Ta (29)
T, = Saa,x;, = Sxy,a, = — Sax,, pnisque x, = Vx,a
T, = Baayx, == — Bx,a; = Bax,, .
. T —
Aussi quand Plangle (z,z,) = 5 nous pouvons écrire
x, = Vax, , x, == — Vax, ' (30)

0 = (Sa, xp), = Sx,x,, + Sx; 2y, et 0= (Sxy xp)g == S, Sxyy 4 S, 2,4

et par suite

- _—_— chr - — . .
Jy = Bax vy, =82, = — Sz, ,

~ . (31)
- J, = Saxyx,y = —- Sz, gy = Sxyay, . '

Comme Sz,a; = Sx,a,, il ne sera donc pas nécessaire d’avoir
les deux constantes T; et T, pour des courbes rectangulalres
mais & la place nous utiliserons ~

T = — 1‘1 == '-l‘g y ’ ) (32)
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Les évaluations suivantes sont utiles

2y, = x,,Sax,x, , puisque Sax;x, = 1, (33)
J "

= aSx x,x,, + x,Sax;, x, + x,8ax, %, ,

= aSax,;, + x,Sax,x ,

= — Ha+Jx, .

De méme

Xy = — Hya — Jyx,
1 = Ta + Jya, ,
Xy = Ta — J x, .

Des deux derniéres relations, nous tirons
Ty — Xy = XpJ A Xy (3%)

Cette identité montre que l'ordre de différentiation n’est pas
interchangeable, comme c’est le cas dans la différentiation ordi-
naire avec variables scalaires. Ce résultat peut étre facilement
généralisé sous la forme

d%m 2m

— = Jymy 4+ Jym, , (35)

bsl bs2 08508,

ou m est une fonction scalaire ou vectorielle des variables
uet ol

Lorsque S, et S, sont deux lignes géodésiques a angle droit, les
identités (33) donnent

xy, = Ta et  x,, = — Hya .
Par suite
B, [y, — T99,] = B, (2312 a4 T ::; -+ %I—j'lga-"f‘ H, ‘S‘;;’)
= H,Sx,a, + TSa,x,
je— H2 Hl e '1‘2 ’
ou

T da dH da
Sr.[r.,. —x — S. T 1 —_
o[04 112 Ty <a o5, + os, + a os, + H, 59 )

!

H,Sa,x, + T8a, x,
H H, — T2 .

i

1 Voir Geometria Intrinseca, par CEs:mo, p. 112.
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~ Ces résultats fournissent un cas particulier du symbole &
quatre indices de Riemann-Christoffel dans un espace a trois
dimensions. -
Les relations de Codazzi pour H1 H, et T se forment facilement
en se servant de cette notation. A.1nS1,

062 + gs— = Salzxx e Sa1 Lo — Samxl - Sa2xll ’ (36)

Sz, (a,y — ay,) + Sa,x,, — Bayx,, ,
Sx, (J, ¢, + Jya,) — TI, — J H, ,
HJ, —2TJ), — J H,

— 2T, 4 J, (H; — H,) .

I

|

De méme

bs2+_—21J + (0, — Hy) . (37)

A ces relations, Cesaro a ajouté

2], 0, d o > e (2
b—si_&— | Sac‘.‘?atr'11 + Sx | Xgg = o, Sx,x,, —-b—‘S_IS.:r‘A,ac12 d’aprés (31)  (38)
= Sxyy ), + Sxyayy; — Say 2, — Sayyy,
= Sy (2, — %9,) + 8(— Hye — Jaxx).(— Hoa+ Jx) ,
— 8(Ta + J,x,) (Ta — J,2,) ,
= Say (J, 0,y + Jyay,) + HyH, — T2, |
‘ . a
:J:—I—J:-}- H H, — T?. :
7. Exemples. — Nous ajouterons quelques exemples pour

montrer la facilité avec laquelle des théorémes bien connus peu-
vent étre établis par le moyen de cette notation.

a) Supposons l'angle (X;X,) - —723 et 'angle (X;X,) = 0,
 nous aurons

x, = xr.Saxlxzj::: x,Bax, xy + x,8ax x, ,

x, cos b 4 x, sinf. .

H = Sa,x, = Sa,(x, cos b + xzysin )

1l

Sz, (a, cos b + az.sin 6) » d’apres I,




GEOMETRIE INTRINSEQUE 237

Cleci montre que lorsque (X, X,) sont a angle droit

a, = a, cosll 4 a, sinl ,
Sa,x, = Sa x, Sax x, (h)
= Ba,x,8ax, 2, 4 Sa,;x,Sux, x, ,
= H, cos§ — T, sinf .
De méme
Buyx, — H, sinfh — T, cosl .

Multipliant la premiere de ces relations par cos 8, la seconde
par sin 6 et additionnant, nous trouvons

H, = Sr, (¢ cosb 4 a, sin) = I, cos® 0 — I, sin 20 + H, sin®{

et, lorsque Sy et S, sont des lignes de courbure passant par le point,

W cos? () sin? )
"R, * R:,'
I, = Saa,x, = SVa, a, N ", 2, (¢)

SVa, 2, V(a, cos ) + a, sin ) (x, cos ) 4 x, sin0)

I

I

(H, cos 6 — T sin0) sin§ — (— T cos O - H, sin0) cos? ,

1 :
= +(H, + H,) sin20 + 1 cos 2(

eb, quand S; et S, sont des lignes de courbure,

- 1/1 1y ..
1]‘ = i(ﬁ: -—-—-}T> sin 20 .

. 2

8. Courbure totale. — Soit xz, le vecteur-unité pris le long de la
tangente & une courbe tracée sur la surface et soit a le vecteur-
unité normal a la surface. Le vecteur A perpendiculaire aux
deux précédents est défini par

A= Vx;& .
La dérivée de A par rapport & s; donne
Ay o= v w4 YV d,

L’Enseignement mathém., 24c année, 1924 et 1925, 16
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La quantité scalaire g = \/SAJ{ est appelée la courbure
totale au point. En utilisant nos constantes au point, nous avons

| Va,x;, = aT, et Vax,, = — xJ, ,
par suite ' e
A, = — aT, + «,7, ,
g’ = SMA = S(— aT, + x,J,) (— aT, + «,J,) ,
= T4 3,

De méme, en dérivant a, nous trouvons

da da do
— = a

s, = do ds, —

da
ds, ’

01:

ou dg représente un élément d’arc dans la représentation sphé-
rique des vecteurs a obtenue en tracant tous les vecteurs égaux
a a a partir d’'un point commun O. Le vecteur « est un vecteur-
unité le long de la tangente a la représentation sphérique. Alors

do do de _ .
Tl —_— Saa1x1 _ d—%Saaxl _.d—ngana - —CESOLA
do .
4T1 o _dsl sin 0§ ,

ot 0 est I’angle (X, ).
Les théorémes et méthodes développés dans cette étude indi-
quent suffisamment la facon suivant laquelle un exposé complet
de la géométrie intrinséque pourrait étre fait. Ce qui a été dit
_suffit, nous ’espérons, pour illustrer la valeur des théorémes et
des méthodes. |

Genéve, juin 1925.
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