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224 B. NIEWENGLOWSKI

Cette équation peut &tre obtenue directement. En effet, de
I’équation donnée:
Vepf =17y,
-on tire
' SaVapf = Say ,
S.a(xpB — Sapf) = Say

a«Sa o3 étant un vecteur, on a simplement

a?SpB = Say ,
ou : ‘
aSpB = o 'Say ,
de méme |
BSpa = §'SBy .
ce qui donne
y = Vapf = a__'1SaY + B_lsﬁy — pSaf

o
et 'on retrouve bien I’équation obtenue en appliquant la formule
d’Hamilton. o '
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Soit p = f(s) ’équation de la courbe cherchée, s désignant
P’arc. Nous représenterons la courbure et la torsion en un point M
par les lettres ¢ et ¢;. On trouve aisément -

Sp’p" =0, T =1, T = ¢,
et ‘ |

e =ca, GO
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« désignant un vecteur-unité perpendiculaire au plan osculateur
en M. On a done:

S R ¢
=T T T
d’ou
1.1
do _ d °eey (2)
ds = ds\ T
: o ) : " .
Mais en remarquant que —— est parallele a p” on a:
da P" P“ R
I = G To — ncT—PT, = ng" , (3)
et en intégrant
p'e” / ;
o7 = e + a , (4)

SO C . .
n désignant le rappotr X et @ un vecteur invariable. Nous pose-

rons ¢ = Ah, ) désignant un vecteur unité constant.
Dans (4) le tenseur du premier membre est égal & 1; donc

(np” + a)? = — 1,

Ce qui donne
2nhShp' = n? 4+ h®? — 1 .

Il en résulte que Sip’ est constant; ce qui exprime que la
tangente a la courbe cherchée en un point quelconque M, fait
un angle constant avec une droite de direction invariable. La
courbe est donc une hélice tracée sur un cylindre quelconque.

Remarque. — Les relations d’ou nous sommes partis peuvent
s’établir tres facilement par la géométrie analytique.

RECIPROQUEMENT. — Dans toute hélice le rapport n est constant.

Prenons I'arc des z paralléle aux génératrices du cylindre qui
porte ’hélice et supposons ’origine de I’arc s dans le plan zoy,
les exas étant, bien entendu, supposés rectangulaires. I.’équation
de I’hélice peut s’écrire:

o = wx + jJy + kis |

z et y étant des fonctions de s. En prenant les dérivées par rap-

port & s,
o/ = 1’ —{—jy' 4 kl .
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La condition Tp’ = 0 donne:
X4yt 2 =1
Si on pose 1 — 2 = p?%, on pourra-écrire
x’ :péos? ‘ y = psing ,
e/ = ip cos ¢ + jp sing + Al ,
R (—ising 4 jcosy)pe ,

donc
c:Tp":pq)’,
7 n /
a:pc = — ilcose — jlsing + kp ,
d’ou
‘ : | “’Ylsf-_—_(i sing — j cosg)lg/ . (5)

D’ailleurs, I’équation (3) donne

g; = np" = n(— i sing 4 j cos ¢) py’ (6)

En comparant (5) et (6) on a donc n = —-I—Dl— et bar suite le

rapport fcl est constant. | c.ogq. f. d.
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