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224 B. NIE WEN G LOWS KI
Cette équation peut être obtenue directement. En effet, de

l'équation donnée:
Yapß y »

on tire
SaVapßzzzSay,

OU

S.a(apß — Sapß) Say

ocSocoß étant un vecteur, on a simplement

a2Spß Say
OU

aSpß a~lSay
de même

ßSpa ß 1Sßy

ce qui donne
y Y a p ß a

1

Say-}- ß"-1 Sßy — pSaß

et l'on retrouve bien l'équation obtenue en appliquant la formule
d'Hamilton.

TROUVER UNE COURBE DONT LA COURBURE

ET LA TORSION RELATIVES A CHAQUE POINT
AIENT UN RAPPORT CONSTANT

PAR

B. Niewenglowskt (Paris).

Soit p — f(s) l'équation de la courbe cherchée, s désignant
l'arc. Nous représenterons la courbure et la torsion en un point M

par les lettres c et cv On trouve aisément

Sp'p" 0 Tp' 1 Tp" c

et
p' p" (1)
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a désignant un vecteur-unité perpendiculaire au plan osculateur

en M. On a done:

a
r' r"P P p'p"
C Tp" '

d a d p"\
dJ ds w ?")

d'où J- JJ'\
(2)

Mais en remarquant que ~ est parallèle on a:

da _ o"

ds
c -L_ — ri* — — no" (3)

T o" — T o" '

et en intégrant
^r,np/ -j- a (4)

1 P

n désignant le rappotr ~ et aun vecteur invariable. Nous pose-
C

rons a XA, X désignant un vecteur unité constant.
Dans (4) le tenseur du premier membre est égal à 1; donc

tip/-j-rt)2 zzr 1

Ce qui donne
2nhS\p'— ;i2 + — 1

Il en résulte que SX// est constant; ce qui exprime que la

tangente à la courbe cherchée en un point quelconque M, fait
un angle constant avec une droite de direction invariable. La
courbe est donc une hélice tracée sur un cylindre quelconque.

Remarque. — Les relations d'où nous sommes partis peuvent
s'établir très facilement par la géométrie analytique.

Réciproquement. —Dans toute hélice le rapport n est

Prenons l'arc des z parallèle aux génératrices du cylindre qui
porte l'hélice et supposons l'origine de l'arc s dans le plan xoy,
les exas étant, bien entendu, supposés rectangulaires. L'équation
de l'hélice peut s'écrire:

P i'JC + jy + kls

x et y étant des fonctions de 5. En prenant les dérivées par
rapport à s,

P' ix' -j- -f kl
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La condition Tp' 0 donne:

-f- -j- 1

Si l'on pose 1 —l2p2, on pourra écrire

xr z=z p cos ff y' sin

p' ip cos ff -f- jp sin ff -j- kl

p" (— i sin ff-{-cos

donc
c Tp" Pf'

f 99

a — ilcos y — sin ff -j- kp

d'où

ds

D'ailleurs, l'équation (3) donne

d a

(i sin ff—jcos ff) If' (5)

ds np"=r n(— i sin «f+ j cos <f)py' (6)

En comparant (5) et (6) on a donc n —~ et par suite le

rapport — est constant. c. /. d.
c

f
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