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- METHODE D’HAMILTON
POUR RESOUDRE UNE EQUATION VECTORIELLE
DU PREMIER DEGRE

PAR

‘B. NieweENGLowskI (Paris).

Dans son beau Traité élémentaire des quaternions, M. P.-G.
Tair, voulant exposer la méthode suivie par Haminton pour
résoudre une équation vectorielle du premier degré, s’exprime
ainsi: « Nous arrivons maintenant & ’admirable investigation
d’Hamilton ».

J’espére avoir rendu un peu plus facile I’exposé dé Tait; un
lecteur, méme peu familiarisé avec ’emploi des quaternions,
pourra ainsi apprécier la belle solution donnée par Hamilton.

1. Rappelons quelques formules. Etant donnés deux quater-
nions g, r; les scalaires des produits gr et rq sont égaux, c’est-a-

dire
Sqr = Srq .

2. Soient «, 3, y trois vecteurs non c()planaires et ', ', y'
trois autres vecteurs. Chacun de ces derniers s’exprime linéai-
rement au moyen des trois premiers, de telle sorte que

« =aa+bB+ec.y
B = a'.a+ b. g+ ¢y § (1)
Y = a".a+ b"B + "y ;
nous poserons ~
| a b c
a b | = A
a’l bll C”

et nous supposerons A 5= 0.
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Il s’agit de prouver que
S.o/f'y = S.afly. A . (2)

Pour établir cette identité, il suffit d’exprimer les six vecteurs
considérés au moyen des vecteurs unités fondamentaux ¢, j, k, en
posant

o = lx + jy + k=
8 = iax’ + Jy + k=
Y —_ i(l‘” + ‘/')I/ + A_:l/
et
of = iX + Y + IZ
§ = iN' + Y K2
Y’ N A )Y 4 L

1

I

en substituant dans (1) on trouve
X — ax + ba' 4+ cx"
Y = ar + b + "
Z = as + 03" — ¢3"
N = aduw -+ Vx + dx", ete
Or,

x Yy oz
Safy = — | x" " =’
A S

X Y Z

S’y = — | X' Yz

X7 Y7

et le second déterminant est égal au premier multiplié par A.
L’identité (2) se trouve ainsi vérifiée.
3. Soient ¢, r, deux quaternions et p, ¢ deux vecteurs; on a:

SsVqor = SpVragq . (3)

En effet,
Vgor = qor — S.qor ,
donc
SeVqor = Saqpr — SeSqpr ,

mais oSqpr est un vecteur, donc le dernier terme de 1’égalité
précédente est nul et I’on a sitmplement:

ScVgor = Soqer = Spreq = SpVrogq .
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4. Considérons maintenant un nombre quelconque de,couples
de quaternions ¢,, 1y,; ¢, T'y;... €6 posons

?(9) = XVqor = Vq,p,r, + Vg,ps7 + ... R )

¢ (p) est évidemment un vecteur. La formule (_3) s’applique a
chacun des termes de la somme précédente, d’ou il suit que

SeXVqpr — SpXVragq .
Si on pose
¢’ () = EVragq .
on a : o
‘ Ss?(p) = Se¢’(s) . . (5)

A

On dit que les fonctlons peto sont con]uguees

. Si 'on pose _
o =¢+k,

h désignant un scalaire quelconque il faut entendre par la que,
par exemple |
2 () = o(p) + ko ;
on en déduit ~ » |
- Sag,(p) = S[cXVqpr 4+ hap] .
= S[cEVrcq + hpa] .

car
Sc’p = Spo ;

en d’autres termes:
See,(p) = S. p{EVrc(/ + hc} .
Si I’on pose

‘P; =9 + &, _
ce qui donne ' | -
| 900 = e0) + ko,
on peut écrire: , ,
Sa9,(p) = Spg,(o) -

Probléme. — Déterminer le vecteur inconnu p tel que
. BVger=1v, (6)
ou (4)

olp) = 71

y étant un vecteur donné.
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Le probléme posé est possible en général. En se donnant les
expressions des quaternions ¢, ¢, ... et du vecteur y et posant
g = ix + jy + kz, on obtiendra une équation du premier degré
en x, ¥, z qui se décomposera en un systéeme de trois équations
en z, y, z que 'on pourra résoudre par les formules de Cramer,
Hamilton a donné une solution tres élégante, que nous allons
développer.

Remarquons en premier lieu, qu’étant donné un vecteur y on
peut, et cela d’une infinité de maniéres, déterminer deux vecteurs
A, v perpendiculaires & y et tels que

Vip = v.

En effet, considérons un triédre trirectangle OXYZ; supposons
que 'axe OZ porte le vecteur y; prenons un vecteur A dirigé
suivant OX et un vecteur p dans le plan XOY. Soient I, J, K,
les vecteurs-unités dirigés suivant OX, OY, OZ respectivement.
Si le triedre est orienté convenablement, on aura

P=J2=K?= —1 IJ = K.. ecte

Alors, solent

A=al, v=2al4+4yJ, y=3K,
il en résulte

Vip = ayK |
il suffit donc de poser zy’ = z” pour que Vipy = y.

Cela étant, on pose

?(p) = Vip,

d’ou
Sio(p) = SAVip = Sk(hp — Shuw)

or

b

A(hp — Shyp) = Xy — AShp

Or 2%y et ASip sont des vecteurs.
On a donc

el de méme
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Mais

SX?(p) = Sp¢’(A) , Spe(p) = Spe’(w) ,
done
See'(}) =0,  Spo'(u) =0,

ce qui prouve que le vecteur p est perpendiculaire aux deux
vecteurs ¢’ (1), ¢’ (u) et par suite

S mp = Vo ()¢ (i) | (7)

m désignant un scalaire. - |

Si Pon sait résoudre I’équation (6), on en tirera p = ¢ (y
On peut donc définir v,b comme étant la fonction inverse de cp
poser ¢ = ¢~!, ce qui permet d’écrire I'équation (7) de cette
facon:

me T (y) = Vo' (o' () ,
Oou encore

my™ (Vap) = V' (¢ (1) - N
7. Calcul du scalaire m. — De (7) on tire
mo’ (v)p = '(V)V?’(X) ¢’ (1+)

en désignant par v un vecteur non coplanalre avec A et pe
Le second membre peut s’écrire ainsi:

¢ (e (M) (1) — @ (V) Se" ()9 (1)

Ce second terme est un vecteur, donc en égalant les scalaires
des deux membres de I’équation précédente, on a:

mSe’(v)p = S¢’(v)¢' (A) ¢’ (&) = S¢'(A) ¢’ (») ¢ (v)

D autre part,

S¢’(v)p = Spe’(t) = SV?( ) = SvVip,
done, . i o ‘
; Se'(vJp = SAuv ,
“ce qui donne
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1l s’agit de prouver que m est un invariant. Remplagons le
triedre A, 1, v par un autre 3’, u’, v" de facon que
Vo= ak 4+ bp 4 cv
w o= a’h 4+ Vw4 v
V.= a"n + bp 4 "y

en posant
a b ¢
a b | = A
all bl/ L_/I

on a (2)

Sk’p’v' = SAiuvx A .
d’autre part:

o' (M) = SVr(ak + by +c¢v) , = aXVrig + bXVruqg + ¢xVrvg

¢’est-a-dire
o (V) = ag’(N) + bo'(p) + co’(v) ,
et de méme:
o' (1)) = a'9' (W) 4 b9 (p) + c"¢"(v)
o' (v) = a"9" (A) + 079" (w) + ¢"9' () ,

et ces formules restent vraies si ’on remplace ¢ par g;. On a
donc aussi
Se' (M) e  (#) 9" (/) = S’ (Mg (p)e' () <A,

done m ne change pas

On peut profiter de cette remarque pour avoir un calcul plus
simple: & cet effet, on peut remplacer A, u, v par ¢, 7, £ et 'on
en déduit

m = — S¢’(i)¢' (1) ¢ (£)

et en remplacant m par cette expression dans (7) on a la solution
du probléme proposé.

8. Hamilton a obtenu une formule débarrassée des vecteurs
Ay, v

Remplacons ¢ par ¢ -+ 2. Comme nous I'avons expliqué au
No 5, ce qui signifie que nous remplacons ¢(p) par ¢,(0) ou
o(p) + hp. Supposons encore ¢(p) = y = Vi, A et p n’étant
pas nécessairement les mémes que plus haut. En procédant comme
au n° précédent, nous obtiendrons :

mye = Ve, (M) ¢, ()
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m;, désignant ce qu’est devenu le scalaire m aprés ce changement.
On aura d’ailleurs ' / —

o SSeMNy(we)
M= T SR

et, quel que soit A, my reste ’invariable quand on remplace
A, w, v par }’, u’, v’ comme plus haut,
On a done

S(g' (N + AN (" (») + hp)(e’ (v) + hv)
Sk ’

¢’est-a-dire . _
my = m + mh + myh® + k3, -

ou m, my, m, sont des invariants, puisque my, est invariant,
quel que soit h. ’ '

D’ailleurs |
o SE My + ¢ (W) F e()Y)
1= ' Shpv .
L S0we’t) + ¢ Mey + A¢' ()
2 -

Shwy

et dans ces formules, on pourrait remplacer A, p, v, par 7, J, k.
Cela étant, la formule

mye = Ve, (N, ()
développée, donne ‘
o myp = V(g'() + k3 (¢'(w) + Ay},
o’est-a-dire: - » | |
mye = V["A) ¢'(x) + AN e + 2o’ (w) + A*hp)

mais ' R

| Vo' e/ (W) = mp = mg™ " (y)
Vip = v .
Posons |
Vg’ + re'(w)] = X«

ce qui nous permet d’écrire

myp = m¥(y) + X + kv .
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Multiplions les deux membres, & gauche, par ¢, ou ¢ -+ h, ce
qui nous donne dans le premier membre:

m, ¢, (e) ou m,y
¢’est-a-dire:
(m 4+ m h + myh® 4 A%y .

Calculons ce que devient le second membre.
Le premier terme devient:

m(p + R (1)
ce qui signifie

me(p™ ' (v)) + mho ()
ou, plus simplement:

my 4 mhq;_1(-}) .

Le second terme donne:
hie + )X ou he(X) + A2X
enfin, le troisieme terme devient:

(¢ + k) R%y = R (y) + A%y .
On a ainsi:

(m + m h + myh® 4 b3y = (m + %)y 4+ h (mqf“l(y) + ¢ (X)
+ 2[X 4+ 9(y)] .

Si ’on égale les coefficients de A2, on trouve

myy = X + ¢(3) .
Done, X est une fonction linéaire de y et ’on peut poser
X =14¢@) = my —9(y)
ou, symboliquement:
Y0 = (my —9)y ,
ou encore ¢ = Mmy — @.
Egalons maintenant les coefficients de /; nous aurons
m; = m q;—l + 9 ()
ou |
my = mcp_1 + ¢(my — 9) ,

L’Enseignement mathém., 24¢ année; 1924 et 1925. 15
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Ce qui donne enfin:

m ?_1

= m; — mye + 9,
ou, sous forme plus explicite: |
my'(y) = my— mye(y) + ¢(e(1) - (8)
Telle est la 'formulé d’Hamilton.

APPLICATION ET VERIFICATION.

Exemple. — Déterminer p par la condition
| Vapf = ¢
a, B, y étant des vecteurs. '
Dans ce cas:
| ?(p) = VapB = aSBp — pSap + BSap = Vppa
done :

¢'(e) = 9fp) -
Par suite: :

() = Varf ,  ¢'(x) = Vapp, ¢'(y) = Vavf .

Pour calculer m nous remplacerons }, u, v par «, (3, y respec-
tivement. ‘

-Alors: .
a?f
a2

Yarf devient Va?f
Vapf devient Vafs?
Vavf3. devient Vayf.

Le numérateur de m devient done:

4 Sa?B.af2Vayf ,
¢’est-a-dire |
a?f2SBaVayp .

Or, -
BaVayB = Ba(xSyB — ySaf + BSay) ,
a?3Sy B et B2aSay sont des vecteurs. 1l reste

— a2B?SBaySap

ou : )
' a?B2SafSafy ;
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le dénominateur devenant Sa 3y, on a finalement

m = a?f2Saf
et, par suite
p.a’fSaf = Ve (M) g (s) -
Pour appliquer la derniére formule d’Hamilton, calculons
my et m,.
En remplacant 2, u, v par «, 3, y on a:

SlapBle(y) + ¢(@Bely + 2o @]
Safy

m, =
Nous savons déja que
pla) = B,  o(f) = «f*, ¢ly) = Vayg
en faisant les substitutions, le numérateur devient
S22 Vayf 4 af’y] = Sa®f?fay = — o*F*Safy

done my = — #2382,
Ensuite,

b — Slefe(y) + 9(@) By + 2p(f)7]
L Safy '

Le numérateur se réduit & S«3VayB et, en remplacant
VayB par aSyf3— ySaf3 + Sy on obtient simplement

— SaBSaBy ,
d’ou
my — — Saf .
La formule (8) donne
p.a?3?Saf = — a?f3%y + SaB.Vayp + V(x. VayB.p) .

Mais,
aVoyB.p = o?BSPy —ayBSaf + af*Say
et par suite
V({aVayB.p) = a?8SPy — VayBSafB 4+ af?Say ,

ce qui permet d’écrire
p.o?B?Safl = — a?3?y 4 «2BSPy + af?Say
et enfin, en divisant les deux membres par «2(32:

pSaf = —y+ a'Say + §7'SBy .
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Cette équation peut &tre obtenue directement. En effet, de
I’équation donnée:
Vepf =17y,
-on tire
' SaVapf = Say ,
S.a(xpB — Sapf) = Say

a«Sa o3 étant un vecteur, on a simplement

a?SpB = Say ,
ou : ‘
aSpB = o 'Say ,
de méme |
BSpa = §'SBy .
ce qui donne
y = Vapf = a__'1SaY + B_lsﬁy — pSaf

o
et 'on retrouve bien I’équation obtenue en appliquant la formule
d’Hamilton. o '

TROUVER UNE COURBE DONT LA COURBURE
ET LA TORSION RELATIVES A CHAQUE POINT
AIENT UN RAPPORT CONSTANT

e

PAR

B. NieweNGcLowskT (Paris).

Soit p = f(s) ’équation de la courbe cherchée, s désignant
P’arc. Nous représenterons la courbure et la torsion en un point M
par les lettres ¢ et ¢;. On trouve aisément -

Sp’p" =0, T =1, T = ¢,
et ‘ |

e =ca, GO
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