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Dans I’exemple cité ot p et ¢ ont les valeurs (12), on peut

prendre 2 = 5 et 'on aura
(2.10° 4+ H1o
10%0 — 10%

— 0,061441766% 33024 46464 54528 57888 58848 59028 59048 59049 .

S =

La probabilité pour que, sur dix épreuves, I’événement A arrive
au moins 10-k fois (et B au plus % fois) s’obtient en divisant par
59049 le groupe de décimales de S commencant par la (kk -+ 1)ieme
et terminée par la (k -+ 1)hi®me décimale. Ainsi, pour que A arrive
au moins six fois (B au plus quatre fois), il y a la probabilité

46464 ;
Q) = z507g = 0786872
et pour que B arrive au plus dix fois (la certitude), il y a bien la

probabilité
59049

99049 b

Qi =
Mai 1925.
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On sait que la congruence

Pl 1 =09 module p , (p premier)
admet comme racines, 1, 2, ..., p— 1. Les coefficients de cette
congruence sont

a, = 0, a2:O,...,ap_2:0, ap_lz'l,

ou la forme de la congruence générale est

1 p—2 —3
T —a P a, P70 4+ .+ a

p— =0, module p.
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- Par suite, si I’on désigne par A; la somme : des -noinbres
14+2+43+... (p—1), par A, la somme des produits des nombres
priska k,ona |

A, =0 | module p , A, 4+1=0, modulep ..

On sait aussi que si’on désigne par S, la somme des puissances

semblables
—1 k R R
Sy =142 44 (p—=1),
on a .
Sk =20, rn()d. P

pour k = 1,2, ..., (p — 2).
TakorREME. — Le numdérateur de SB; contient le facteur
p(p + 1) 2p + 1) et le numérateur de SY;_ | contient le facteur

p*(p + 1)
Soit le polynome

Po(®) = (®+ )"+ (x+2)" + ... + (x+ p)* .

En développant
v, (7) = " 4+ C) S{’.oc"'_1 + C Sfac"’2 + ... 4 SP.
Sin ést impair | / |
op(— ) = —a” + CLSPa™ ' — 1Sl . 4 SP .

- Donc
9, () + 9, (—a) = 2[s§ +C2SP_ a4 CESP_ at .. 4O Sfx""'l] .
Faisons z = 1 dans cette formule, nous obtiendrons

9" L3 4 (p )" 1" 2 R
=201 2" e 4 p") 4 2[CLSE_, 4 CASE_, .+ OS]

En mettant 257 = p(p + 1), cette formule s’écrit |

(p+1)*—p*—=1—nplp+1)
=2Ch8P 4+ CoSE_+..FC0SF . ()
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Le polynome en p
(p+0"—pt—1 —nplp+1)

est divisible par p2(p -+ 1), on peut vérifier en faisant p = 0,
p + 1 = 0 dans ce polynome et sa dérivée pal rapport a p.

Or S} = (p + b .-Mais on a
(p+ )7 —p"— 1 —Tp(p + 1) = 20785 + 20785,

done S? contient p?(p + 1)% en facteur et la formule de récurrence
trouvée prouve que ce résultat reste le méme pour Sf, S§,
D
SPy, ete.
Supposons maintenant n pair. Alors

9, (1) + g, (— ) = 2[S0 + CSE_,at 4 CUSI_at 2" ()
Faisons = = 1, aprés toutes les réductions, on aura
(p+ 1" —pt—2p—1= z[cns,fj 4+ ChsP_ 4. O sg’] ,

Le polynome du premier membre est divisible par le facteur
p(p+1)2p+1) et comme SY — plp = DEp + 1), S? admettra

6
le méme facteur et de méme SE, S§ ... . Le théoréme est vrat pour
n=24, .. (p—3)etnon pourn=p—1.
Corollaire. — En remplacant p par p-—1, on voit que le

numérateur de SQ,LJri est divisible par (p—1)p(2p—1) et que le
numeérateur de S%7Y contient le facteur (p — 1)? p2.

Si p est premier, S5! est divisible par p, SP+ est divisible
par (p—1)%

De plus, si 2p—1 est premier, S5 est divisible par 2p—1 et
s1 2p -+ 1 est premier, S}, est d1v1s1ble par 2p + 1.

TueorEME. — Si Pon désigne par AP~! le produit n & n des
(p—1) premiers nombres entiers, le nombre AP—! est divisible
par p. Il l’est aussi par p* pour n impair supérieur & un.

Je considére les formules

(1) (e 42 e p— 1)

— Pl + Ap 1 .p—2 4+ ... + Ap_,r + Ap-—l ’ (1)
(= 1) =2 o fr—p + 1)
. ..p—1 1 — —1 — — —
= PN AP TR AP Ag_;x + Ag_} (2)
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~ En faisant la différence et en donnant a » la valeur 1, on a

pl=2[AP=t 4 ar—' 4 . 4 artl] .
_En retranchant A?—!, on a
pl—plp—1) =2AT 4 AT L+ AL
ou encore
pllp— D!+ 1 —p] = 2[A”'l + AP L ArTl]
" Le premier membre se divise par p?, puisque

p—1l4+1=0. | module p
(théoreme de Wilson). | ,
En faisant la différence de (1) et de (2) pour =2, on trouve

3.h.plp 4+ 1) = 2[2P2APT poor—tar—t Ly oarTl]

en retranchant A?—2 x 2°—! des deux membres, on a

B eplp 1) =27 ‘P(p—-1)
: — 22[2”“5A"—’ + 21)—7Ap—1 4o+ Ap—-l ’

ou encore

plZ.3 .. (p—1)(p+1) — 227 (p —1)]
= 4[2P AL 2PTTAPT L AP
En vertu des théorémes de Wilson et de Fermat !, le second
facteur du premier membre est de la forme

(l'pr—- Dip+1) —(mp+1)(p—1),

nombre qui contient p en facteur. Le premier membre est donc
divisible par p2. En faisant les mémes opérations sur les formules
(1), (2) mais pour z =3, 4, ..., (p—1), on arrive & remarquer que
la congruence |

1]

Af‘"‘x”f" + Aff-lx!'—-ﬁ + ...+ Ag:_;x =0 | '.f mod. p?

1 Les calculs faits au moment de ces remarques peuvent, comme le lecteur 'aura
constaté, donner une démonstration du théoréme de Wilson, et aussi une démons-
tration du théoréme de Fermat. . _
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admet plus de p — 1 racines, ce qui exige

APt =0, mod. p?

Af~1 =0 , mod. p?

Ai:"_) =0 . mod. p?
Corollaire. — L’expression

p+Dp+2..2p—1)—1.2.(p—1)

est divisible par p?® et par suite aussi

pP+Np+2... =1 _,
1.2 ... (p——‘l) '
En effet

P+Dp+2 . (p+p—1) =p~ AT P AT

A;:} =p-Hp—2) ... jp—p—1] = pl’—l — Af—lpp—2 4o+ A;___} '

done
p+NHp+2 ... 2—-1)—(p-—"1"
= 2[pP AT 4 pPTRAPT L pARTh

D’aprés ce qui précede, le second membre est divisible par p3.
Il en sera de méme pour ’expression donnée.
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