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SPECTRES DES PROBABILITÉS

PAR

M. Michel Petrovitch (Belgrade).

Je désigne comme spectre d'une suite limitée ou illimitée de

nombres
M,, M2, M8, (1)

un nombre décimal S rattaché à la suite (1 et jouissant de cette

propriété que chaque nombre M& est, directement ou indirectement,

déterminé par un groupe de décimales successives de S.

Comme je l'ai montré 1, on peut calculer un spectre d'une
suite (1) toutes les fois que cette suite se laisse mettre en
correspondance avec une série de puissances dont les coefficients ou
bien sont des nombres réels entiers positifs N&, ou bien se laissent
ramener à de tels nombres par une transformation

Û(MfcI NÄf k) 0 (2)

Or, dans un grand nombre de problèmes de probabilités, la
probabilité considérée apparaît comme coefficient d'une puissance
Xh dans le développement d'une fonction déterminée rattachée

au problème, ou, plus généralement, comme coefficient de

xhyhzm dans le développement d'une fonction déterminée
E(#, y,3,

Pour ne citer qu'un des problèmes fondamentaux et des plus
élémentaires de cette espèce, considérons deux événements
contraires A et B, ayant pour probabilités respectives et
sur p. événements dans lesquels l'un ou l'autre de ces événements
doit arriver infailliblement. La probabilité pour que, sur

1 Les spectres numériques (Gauthier-Villars, Paris. 1919).
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206 M.

ujépreuves, l'çvénement A se produise fois (et B A; fois),
coïncidera avec le coefficient de xdu polynome

f(x)zz(p-j-(jxYxzza0 -j~ ai x "h a2*^2 ~f* ~f" > ' (3).

p et q étant les probabilités respectives de A et B.
La combinaison la plus probable, c'est-à-dire dans laquelle le

nombre d'arrivées de l'événement A est et celui de B

a la probabilité égale au coefficient de x(l—rV dans le développement

(1).
La probabilité pour que, sur pépreuves, l'événement A arrive

au moins p. — kfois (c'est-à-dire l'événement B au plus & fois),
coïncide avec le coefficient de xh (k1, 2, 3... dans le développement

f\ (x) ßo + $ix + ?2x2 + • • • W

Lorsque les uépreuves assignent aux événements A et B les

probabilités successives

(Pi ' Ci\) > (p2 ' ^2) > » '

la probabilité pour que A arrive au cours de ces p épreuves
m fois, et B nfois,coïncide avec le coeffidient de xmyn dans le

développement de la fonction

F (x>y)(xpx +.r^)(^p2 + ••• (xP* + y<i*i • (5)

Dans de pareils cas, la probabilité considérée P& varie avec

un entier positif & désignant, par exemple, le nombre de fois qu'un
événement déterminé, dans des circonstances déterminées, est

présumé d'arriver sur un nombre fixe p d'épreuves.
Formons le polynome de degré p

f(x) ZZ ' P, # -j- "F ••• -f" > (^)

et soit
Q(u, 0 (7)

une relation telle qu'à chaque valeur P& correspond, comme
solution de (7), un nombre entier positif v N&. Enfin, soit

y {%) -j— N2 -4- t (^)

le polynome de degré p ayant pour coefficients les entiérs
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Un spectre S de la suite de probabilités Pk sera fourni par la
valeur que prend cp(x) pour x 10~h, où h est un entier positif
convenablement- choisi. Notamment, h est un entier quelconque
égal ou supérieur au logarithme du plus grand terme de Ja suite
Nfc.

La probabilité P& pour que Vévénement se produise k fois sur
u épreuves,sera fournie par la solution en u de Véquation (7),
aprèsy avoir remplacé v par le groupe de décimales de S commençant

par la (A/c+l)ième et terminé par (/c-(-l)Aième
Dans un grand nombre de problèmes, on connaîtra facilement

les polynômes j(x) et ®(x)rattachés au problème, comme on le
voit déjà sur les exemples simples cités. Les probabilités respectives

de deux événements A et- B étant deux nombres rationnels

p~M' q1 ~~ M" ' ^
on aura

û(tt, v) — M!V - v (10)

?(•*') + <txrx — p*\ (H)

Dans l'exemple où
2 1

P —3
> q -3 (12)

le spectre des probabilités pour que, sur 10 épreuves, l'événement
A se produise 10 — kfois (et B& fois) 1,2, 3 10), sera fourni
par la valeur que prend l'expression

?{r) 3'°[(| + |)'°- (^|)10J (2 + *)" - 210 (13).

pour x 10A Sachant qu'aucun entier Nfe n'a plus de cinq
chiffres, 011 peut prendre h 5, ce qui fournit comme spectre
des probabilités

S (2 -j- 10-5)10 — 210

0,05120 11520 15360 13440 08064 03360 00960 00J 80 00020 00001 (14)

La probabilité pour que, sur 10 épreuves, l'événement A arriva
10-k fois (et B kfois), s'obtient en divisant par

M* =31059049
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le groupe de décimales de S commençant par la + l)ième et
terminée par la (/r + l)Aième décimale. Ainsi, pour que A arrive
six fois et B quatre fois, il y a la probabilité

8064

59049
P4 ——- ttwwtt 0,136545

La combinaison la plus probable est celle ayant comme
probabilité le groupe de décimales 15360 divisé par 59049, c'est-à-
dire la probabilité 0,260123 ; c'est la combinaison où A arriverait
sept fois et B trois fois dans dix épreuves.

Vérification: la probabilité pour que, sur dix épreuves,
B arrive au plus p.fois, c'est-à-dire la certitude, est bien égale à

la somme de tous les groupes successifs à cinq décimales de S,

augmentée de 210 — 1024, le tout divisé par 59049, ce qui fait

10244-51204-11520+15360-1-134404-8064-1-3360-f 960+180+2Q+.1 __
59049 ~ ~~ *

Les probabilités respectives de A et B étant (9), la détermination

de la probabilité Q& pour que, sur p épreuves, A arrive au
moins k fois (et B au plus p-—kfois) 1, 2,... se ramène à la
formation du spectre suivant:

Le nombre Qfe étant la somme de k premiers coefficients de la
fonction (p-j-qx)P,admettra encore la transformation (10) et le

spectre des Qfe sera fourni par la valeur que prend l'expression

fi(x) (15)

pour x 10"'1, où h désigne un entier quelconque égal ou supérieur

au logarithme du plus grand terme de la suite correspondante
Nfc, Le spectre sera donc le nombre

s — M!A
(1Q L(16)T" 10*h __ 10^-1 ' S

La probabilité Qk

Qks?i M~p'
>

' (17>

où Sfe représente le groupe de décimales de S commençant par le

(hk + l)ième et terminé par le (k + l)Aième
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Dans l'exemple cité où petqontles valeurs (12), on peut
prendre h5 et l'on aura

_ (2.10* + I)10 _0 — 1050 ___ 1045 —

— 0,06144 17664 33024 46464 54528 57888 58848 59028 59048 59049

La probabilité pour que, sur dix épreuves, l'événement A arrive
au moins 10 -kfois(et B au plus fois) s'obtient en divisant par
59049 le groupe de décimales de S commençant par la (hk + l)ième

et terminée par la (k + l)Aième décimale. Ainsi, pour que A arrive
au moins six fois (B au plus quatre fois), il y a la probabilité

Q* SÊ> °-786872 •

et pour que B arrive au plus dix fois (la certitude), il y a bien la
probabilité

_ 59049 _^,0 — 59Ö49 ~~

Mai 1925.

SOMMES DES PUISSANCES SEMBLABLES
DES p — 1 PBEMIERS NOMBRES ENTIERS,

p ÉTANT UN NOMBRE PREMIER

PAR

A. Lévy (Paris).

On sait que la congruence

x?1 EE 0 module (p premier)

admet comme racines, 1, 2, 1. Les coefficients de cette
congruence sont

0
» o2 =z 0ap__2 0 ap_x ~ 1

où la forme de la congruence générale est

^a\x^ ~}~ a^xl-j--}- 9 module
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