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1% A. BUHL
Au point de vue analytique, les symétries ne sont que des

symétries de déterminants. Le « Calcul tensoriel » ou le « Calcul
différentiel absolu» peuvent n'être considérés que comme des

prolongements, exceptionnellement heureux toutefois, de la
théorie des déterminants fonctionnels.

Remarquons encore que (49) est un cas particulier de (48).
En effet

Gry — g G*a G m gX G|jiV

/

Donc (49) coïncide avec (48) à second membre nul.

XIII. — Analogies. — Groupes.

Nous revenons ici, avec une extrême brièveté, sur les fondements

de la Théorie des Groupes continus due à Sophus Lie.
Le but est de montrer les analogies entre l'analyse de Lie et
l'analyse précédente. Nous reprenons les échelons des démonstrations

fondamentales en sautant de l'un à l'autre sans démonstrations

développées ; pour celles-ci le mieux serait de se reporter
aux excellentes Lezioni de Luigi Bianchi.

L — Soient les formules de transformation

— f^ [X\ Xq• •• » Xrlidt, <?2 » »*• » A,•

Leur itération donne

ff f t t

Xi— fi(Xi>X2'' hi* Ai» (52>

ou bien, sices formules donnent naissance à un

X- ——! f£ » X^,>•> Xi1 * • (*^3)

Montrons d'abord qu'il existe de certaines fonctions F des

et des a restant constantes, c'est-à-dire donnant
\ 9

öF o F dxi
dV— + —,— 0

t>ak

en vertu d'équations différentielles à former.
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Soient ajk (aa, a2, —,a,)ou,plus brièvement, (a), des

fonctions, en nombre r2, formant un déterminant «. On voit

déjà que ces fonctions sont comparables aux des ds2 ein-

steiniens, le déterminant a étant comparable à g.

Formons

Ï>F öxjöF
a.,.—— 4- OL-,7 " oJ5 ak

Ù

ce que l'on conviendra d'écrire

Y,. (F) A. (F) + Xj.(F) 0 (5'i)

en posant
/

Mp> *j*£rk • ^ (55)
ft i

Cette dernière équation donne enfin

t

"E«%(*') (56)
ù a,J

Cette formule représente le premier système fondamental de

Lie; il s'intègre avec n constantes arbitraires x1, x2, • xn. Le
raisonnement fait déjà apparaître, en (55), deux systèmes de

transformations infinitésimales.

2.— Les équations (54), étant vérifiables, forment un système

complet. C'est dire que

(V Y*) Yy Yk— Yk YjCjks y s

Les choses étant disposées pour que les A ne dépendent que
des a et les X' que des x nos dernièrés équations doivent se

scinder en

(V Aa) cjksAS•(x;, 4) cJkX (57)

les Cjks ne dépendant pas des x dans la première de ces
relations et ne dépendant pas des a dans la seconde. Il s'ensuit
que ces cjhs ne peuvent être que de simples constantes
numériques; ce sont les constantes de structure.



198 A.i<2>. — Aux ccik(a) adjoignons des «^(6) et des «^(c). Le
système

«<*('') ^ 0

est encore complet,de par la première équation (57). Multipliant,
par asfe (à), on a

0<ï> Ö(I>
—7 f- a (b) a (c)
ö/, "T" \ / s\ \ àc^k u n

d'où
V

ÖC

ÔA*̂
=»«'*W«A(c) (58)

C'est là un système du type (56); il peut être intégré par des
formules telles que

C-(fltj flj | ••• » &r) »

/ 0 0 0,
\^1 ' • 1 *M f ^2 » • • • > •

Enfin
(f v

wkÇ ^ <c) ç"- (x'") aîi <6><c> W*")a,i0 •

¥

C'est encore un système du type (56) correspondant, cette
fois, à l'équation (52) ; celle-ci doit bien contenir les puisque
(53), pour bh a°h d'où eu — au, donne — x d'après (51).

On peut déjà conclure que la co-existence des formules (51),
(52), (53) est assurée par celle des formules (56) et (57).

%

4.— Les trois paragraphes précédents représentent, en somme,
les trois théorèmes fondamentaux de Lie.

Un perfectionnement important fut obtenu par Maurer qui
montra que les oék pouvaient être isolés en des équations
différentielles spéciales.

La première équation (57) développée donne

^ V i),am a*mà*m ~~ CJks*sn '
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Multipliant par atn on peut écrire ensuite

Ö at/n ô a
tn

ajm akn Ôrt cj*'
m

Multipliant par <xk:x il vient

Ö a

ö a

ô ata

ba
ka j ''

cjktCL
' (59)

Telles sont les équations de Maurer.
La formule de Stokes, prise sous la forme

/•**.=ifm ô a<|1
" da da

Öß ' A '

les transforme en

f cLth da.rr ~c-,.ta^a da
k 9 J J v- v

(60)

On peut montrer, comme l'a fait Schur, que l'intégration des

équations de Maurer se ramène à celle d'un système d'équations
différentielles linéaires à coefficients constants, c'est-à-dire
uniquement à des opérations algébriques. Nous n'insisterons pas
davantage; remarquons seulement que notre brève esquisse
appuie la théorie générale sur la construction préliminaire du

groupe paramétrique,groupe défini par la première équation (57).
Rappelons cependant V identitéde entre opérateurs

X(
Y Y Yi jk
Y YY

f

I Y Y Yxi j

o d'où

csi-. Csj, csk.

C- C•CiloyS J o)S kioS

i j k

0 (61)

si l'on tient compte de la seconde équation (57) pour des mineurs
tels que

Y Y Y Y <Y ' Y-)

En outre on voit aisément, par exemple à l'aide de (59), que

cjkt + ckjt — 0 (62)
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5. —- Il est facile maintenant d'indiquer les remarquables
analogies offertes par l'analyse des théories einsteiniennes d'une
part, par l'analyse de la théorie des groupes de Lie d'autre part.
On pourrait d'ailleurs les développer bien davantage. Contentons-
nous, pour l'instant, de remarquer que dans les Théories de : \

Lie Einstein

Deux formes différentielles, l'une linéaire, l'autre bilinéaire,
jouent un rôle fondamental.

Ce sont les deux fermes engagées
sous les intégrales dans l'équation
(60).

Ce sont :

Pidxi., M .jdx^d.(4)

Les formules stokiennes interviennent à la [base des deux
théories.

Ces deux théories ont des opérateurs de dérivation plus généraux

que les dérivées partielles ordinaires et, en général, non
permutables.

Ce sont les transformations
infinitésimales

-A. (F) Xj (F) (55)

Ce sont les dérivées en D
conformes à l'équation schématique dû
début du paragraphe X.

Il y a des égalités, se construisant à l'aide de déterminants
symboliques, qui, d'une théorie à l'autre, se comparent aisément.

Telle est l'identité de Jacobi avec
sa conséquence (61).

Voir aussi (62).

T.elle est Mdentité de Bianchi (40)

Voir aus d (39).

Signalons encore que, dans ses Lezioni differenziale
assoluto (pp. 289-295), M. T. Levi-Civita étudie des « dérivées
d'arcs » dont la permutabilité est de même nature que celle

d'opérateurs X.
Il y a même là une véritable correspondance entre opérateurs

D et opérateurs X.
Dans le même ordre d'idées la Théorie des Groupes, de par ses

applications géométriques, se combine tout naturellement avec
la Théorie des variétés à ds2donné;plusieurs chapitres de Lie
et de Bianchi en font foi très simplement.

1
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Enfin, après avoir rapproché Lie et Einstein, il est presque
impossible de ne pas dire quelques mots de l'admirable conférence

faite au Congrès de Toronto par M. Elie Cartan, conférence

reproduite par L'Enseignement mathématique en tête du

présent volume. Ici nous venons seulement de rapprocher lès

bases analytiques des deux théories. Envisager le jeu des groupes
dans les espaces généralisés est une autre question ; cependant,
comme le montre M. Cartan, ce jeu n'est souvent possible que
grâce au parallélisme généralisé de M. Levi-Civita et, comme
nous l'avons montré, ce parallélisme apparaît immédiatement
avec les toutes premières propriétés déduites de nos identités
fondamentales (1). Ces identités, nous y reviendrons plus loin
(§ 15), peuvent être considérées à un point de vue purement
analytique ou comme attachées à des volumes ou aires de

l'espace euclidien. C'est donc l'étude approfondie de l'espace euclidien

qui peut inciter à envisager des espaces différents ; de
même le seul usage du symbole analytique permet de créer
logiquement espaces et groupes.

XIV. — Formules antistokiennes. — Equations canoniques.

Abordons maintenant les analogies des Théories einsteiniennes
et des Théories dynamiques classiques. Le sujet possède déjà
de nombreux développements faits à différents points de vue.
Ici nous voulons simplement faire naître les équations canoniques
de Jacobi-Hamilton de considérations analogues à celles sur
lesquelles repose l'analyse einsteinienne.

Soient les deux types de matrices

ÖM ÖM

ö.r, ö.r2

di' öf
öo'j ö,x2 ö^3

Le premier type suppose au moins deux fonctions et un nom-
bre quelconque de variables ; c'est le type déterminant fonctionnel

ou type stokienquijoue le rôle fondamental en Analyse
einsteinienne. Le second type (63) suppose un nombre quelconque

öA öB öG

ÙX- ùx (>x.
J J J

öA öB öC

'A/ Ej

(63)
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