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10 J- G- VAN DECORPUT
•difficile de savoir quelle méthode il a employée, que nous connaissons

déjà cinq méthodes générales pour améliorer les résultats
precedents, une méthode géométrique, une méthode arithmétique
et trois méthodes analytiques, dont une découle de l'étude des
variables complexes et les deux autres de l'étude des variables
réelles h

Laméthode de

C'est Voronoï2 qui a découvert la méthode géométrique (1903).
Comme Dirichlet, il décompose le domaine D,, mais il le fait
d une autre manière. Il construit tangentes à l'hyperbole
équilatère uv x,desorte que le domaine est décomposé en
un polygone (de q+ 2 côtés) et en + 1 segments. Il calcule
approximativement le nombre des points entiers de chacun de
ces domaines; les points entiers qui pourraient se trouver surl'une des tangentes, sont comptés ou avec le polygone ou avecl'un des segments. Il choisit le nombre q et la direction des
tangentes tels que l'erreur soit la plus petite possible. Son résul-
tat est

3

A(„e) O (l/7 xlog ; (;-!)

il est donc bien meilleur que celui de Dirichlet.
Avec la méthode de Dirichlet le domaine est décomposé en

3 parties, avec la méthode de Voronoï en -f 2 parties, et ce
qu il y a d'intéressant dans cette dernière méthode est que qcroît indéfiniment avec x.

Voronoï s'est rendu compte que sa méthode pouvait être
appliquée non seulement dans le problème des diviseurs, mais
dans bien d'autres problèmes; on le sait par la fin de
l'introduction de son travail:

« Il est aisé de généraliser, dit-il, la méthode exposée dans ce
mémoire et de l'appliquer aux recherches des valeurs asympto-
tiques de différentes sommes multiples. »

1 Nom», considérerons pas la méthode de Wigert 5 (1919), p. 310-318) parceque jusqu ai present on ne l'a employée que dans le problème du cercle, d'autant plus quetrouvé par M- wi«ert est » ^ tro„v4pl^r
2 J. für Math., 120 (1903), p. 241-282.
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M. Sierpinski1 applique la méthode de Voronoï au problème
du cercle, et il trouve

3

P (x) o(\/x) (4)

donc un résultat bien meilleur que celui de Gauss.

4. — La méthode de Piltz.

C'est M. Piltz qui a trouvé la méthode arithmétique (1881).
Comme nous l'avons déjà fait remarquer à propos de la méthode
de Dirichlet, il suffit dans le problème des diviseurs de s'occuper
de la somme

2
h entier

où pour abréger on a posé <[>(?) v — E(c) — ^.
Dirichlet se sert de la borne supérieure triviale x pour

la valeur absolue de cette somme, mais M. Piltz a remarqué
que, si x est grand, les termes négatifs atténuent l'influence des
termes positifs. Il décompose l'intervalle (1, 1/x) en intervalles
partiels, et il montre qu'en choisissant d'une manière appropriée

les points de division, la contribution de chaque intervalle
partiel à la somme en question est d'un ordre plus petit que la
longueur de l'intervalle, d'où l'on déduit que la valeur absolue
de la somme considérée est d'un ordre inférieur k\/x.

L'idée fondamentale de la méthode de Piltz est donc de réunir
beaucoup de termes

Ht) + Hrfr) + • +

de telle façon que la valeur absolue de cette somme reste cependant
relativement petite. Pour cela on doit pouvoir trouver une

borne supérieure de cette valeur absolue, ce qui se fait de la
façon suivante:

1 Prace mat. fiz., 17 (1906), p. 77-114.
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