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par N,_;m-r Il en résulte que la somme de ces produits est
égal & N, ,,. En particulier, on obtient de cette maniére [’expres-
sion de la somme des carrés des coefficients du binéme. Ces
formules sont connues, on les trouve, par exemple, dans un livre
de P. Bachmann®. La démonstration que je viens de donner
est-elle nouvelle ? Je ne le crois pas, mais j’al pensé qu’il n’était
pas inutile de I'indiquer.

NOTE DE GEOMETRIE
TRIANGLE ET CERCLE CIRCONSCRIT

PAR

A. Amier (Aix-en-Provence).

I. — On connait le théoréme suivant:

« Soient un triangle ABC et le cercle circonscrit & ce triangle.
Les points de rencontre de chacun des trois cotés avec la tangente
au sommet opposé sont en ligne droite. »

Ce théoréeme peut étre généralisé ainsi:

« Soient un triangle ABC et le cercle circonscrit de centre O,
de rayon R. Les rayons aboutissant aux sommets sont orientés
de telle sorte que:

"OA = OB = O0C = + R .

Sur chacun de ces rayons prenons des points A,, B,, C,, tels
que

OA, = OB, = OC, = X ,
K étant un nombre algébrique quelconque.
En A, on mene la perpendiculaire & OA qui coupe le coté opposé
au sommet A en A’; en B, on méne la perpendiculaire & OB qui

1 P. BACHMANN, Niedere Zahlentheorie, 11, Teubner, 1910, p. 122.
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coupe le c6té opposé au sommet B en B'; en C, on méne la perpen-
diculaire & OC qui coupe le coté opposeé au sommet C en C'.
Les trois points A’, B', C’ sont en ligne droite. »

/

A
/

Soient b, ¢ les points ou la perpendiculaire en A, & OA coupe
les cotés AB, AC du triangle. La droite be perpendiculaire au
diametre OA du cercle circonscrit est I'inverse du cercle cir-
conscrit avec A pour pole et AD X AA, pour puissance d’inver-
sion, D étant le point diamétralement opposé & A. Done:

Cx<Ac=AD x AA, , AB x Ab = AD x AA,
De 14, on tire:
Ao = AD X AA, o7 AD X< A4, (1)
AC AB

Le théoréme de Ménélaus appliqué au triangle ABC rencontré

par la transversale A’cb donne:

A'B ¢C N
— X =X —==1.
Alc cA HB
D’ou l'on tire:
A'B ¢cA bB
S = = (2)
A’C cC bA
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¢’est-a-dire
- AD AA.
¢C = cA 4+ Ac = s 1+ Ac ,
AC
= _ AC? — AD X AA, b2 — AD > AA,
C = — — —
AC AC
De méme: -
_ 2 _ AD.A
bB = ¢ —
ADB

>

En remplacant dans (2) cA, BB, cC, bA par leurs valeurs:

A’B 2 — AD.AA
AD

A'C he — CAA,
Mais:
AA,=0OA, —OA =K —R, AD = — 2R .
Par suite:
A’B ¢ 4+ 2R? — 2K.R

|

— 77 & 2R? — 2K.R °

"
9

Par permutations circulaires, on obtient:

|4

BC _ a*4+2R*—2K.R - CA _ 4 2R*—2K.R
B’A ¢+ 2R? — 2K R’ B @+ 2R?—2K.R°~
D’ou:

A'B B¢ ¢’A
Xe— X =—=——=1,
Al¢ B’A ¢’B

relation qui prouve que les trois points A’, B, ¢’ sont en ligne
droite. |

Remarque. — Les calculs précédents n’ont de sens que si
K == + R. Si K = + R on sait que:

A'B e? B’C _ a® C’A _0?
Ac ¥ ®a ¢ TB L &
Corollaire I. — Prenons K=-+R. On trouve précisément le

théoréme dont la généralisation est 'objet de cette note.
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Corollaire I1. — Prenons K=0. On a le théoréme:

Les projections du centre du cercle circonscrit & un triangle
sur chaque coté parallelement & la tangente au sommet opposé
sont trois points en ligne droite.

Corollaire I11. — Prenons K =-—R. On a le théoréme:

Soient un triangle et le cercle circonscrit & ce triangle. Les
points de rencontre de chacun des trois cotés avec la tangente
au point diamétralement opposé au sommet opposé sont en
ligne droite. '

II. — Dans le N° du 15 mars 1904 de L’Enseignement mathé-
matique, t. VI, p. 130-132, M. J. Kariva (Tokio) énonce la pro-
position suivante:

«Inscrivons un cercle O dans un triangle donné ABC; nommons
respectivement X, Y, Z les points de contact avec les trois cotés,
BC, CA, AB. Sil’on prend sur les droites OX, OY, OZ des points
D, E, F également distants du point O, les trois droites AD,
BE, CF concourent en un méme point. »

Ce théoreme a donné lieu a plusieurs lettres et communications
dont le résumé se trouve dans le numéro suivant (p. 236-239,
mai 1904).

Sa démonstration se déduit immédiatement du théoréme pré-
cédent en transformant par figures polaires réciproques; il suffit
de transformer la figure par rapport au cercle circonscrit et
I’on obtient pour théoréme corrélatif précisément celui de
M. Kariya.
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