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METHODES D’APPROXIMATION
DANS LE CALCUL DU NOMBRE DES POINTS
A COORDONNEES ENTIERES*

PAR

J. G. vaAx pER CorpUT (Fribourg, Suisse et Groningue).

1. — La méthode de Gauss.

Dans les écrits laissés par Gauss? on trouva les fragments
de deux articles qu’il avait I'intention de remettre a la Société
des sciences de Gottingue dans les années 1834 et 1837, mais qu’il

.n’a pas achevés. Dans ces fragments Gauss déterminait au

moyen des points & coordonnées entiéres I’aire d’une figure, et
spécialement d’un cercle dont le centre coincide avec 1’origine
des coordonnées. Si le rayon est égal a 10, 101710, 100 ou
100110, Gauss a calculé que le cercle contient

317 , 3149 | 31417 ou 314197

points entiers (c’est-d-dire points & coordonnées entieres),
tandis que Paire du cercle, & une demi-unité pres, a pour valeur

314 , 3142 , 31 416 ou 314 159

’

de sorte que la différence est relativement petite. Dans cet
article, lorsque nous parlerons des points entiers d’une figure,
nous voulons parler des points & coordonnées entiéres situés a
I'intérieur et sur le contour de cette figure.

! Conférence donnée a la premiére Réunion mathématique des Universités de la Suisse
romande, a Geneve, le 17 février 1923, par M. J, G. van der Corput, professeur & 'Université
de Fribourg (Suisse). — Depuis le semestre d’6té 1923 M. van der Corput occupe l'une des
chaires de mathématiques de I’Université de Groningue. Réd. ‘

2 Werke, 11, p. 269-291.
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Nous pouvons nous attendre & ce que le nombre des points
entiers d’une figure soit approximativement égal & l'aire de
cette figure. Etant supposé que le contour de la figure a une
longueur déterminée I, Gauss démontre que la différence entre
ces deux quantités est comprise entre — 4 (I -+ 1) et & (I + 1).
La démonstration qu’il en a donnée est la suivante:

Soit r le nombre des carrés tels que leur centre ait des coor-
données entieres, leurs cotés aient 'unité pour longueur, et a
I'intérieur desquels se trouve au moins un point du contour.
Le nombre des points entiers de la figure est plus petit que 1’aire

de la figure augmentée de r, mais plus grand que cette aire,

diminuée de r, de sorte que la différence entre le nombre des
points entiers et I’aire de la figure est comprise entre — r et r.
Une portion du contour qui appartient a plus de quatre carrés
différents contient au moins deux points distants de plus d’une
unité. Si donc r est plus grand que 4n, n étant entier, il y a sur
le contour n -+ 1 points tels que la distance entre deux points
consécutifs est plus grande que 1. Alors la longueur du contour
est plus grande que n, et comme nous pouvons choisir 4 (n + 1)
plus grand ou égal & r, r est plus petit que 4 (I -~ 1), et la pro-
position de Gauss est démontrée.

Nous pouvons considérer comme cas particulier celui du
cercle u’ + ¢* = x, u et ¢ étant des coordonnées rectangulaires.
Soit P (z) la différence entre le nombre des points entiers du
cercle et son aire. En vertu de la proposition de Gauss la valeur
absolue de P (z) est plus petite que 427V 'z + 1). P (x)
est donc au plus du méme ordre que la fonction \/z, ce que ’on
écrit

Pr) = 0(Vx) ,
O désignant le symbole connu de Landau.

Nous allons traiter maintenant un autre probléme, celui des
diviseurs. Le nombre d(n) des diviseurs du nombre entier posi-
tif n ne peut pas étre représenté approximativement par une
fonction simple. Par contre on peut trouver une expression

simple pour représenter
D () :2 d(n)

1§n§x

n entier
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d’une maniére approchée. En effet, sur 'hyperbole équilatére
u¢ = n se trouvent exactement d(n) points entiers, car & chaque
diviseur ¢ de n correspond un point & coordonnées entiéres

et % et réciproquement. La fonction D (z) est donc égale au

nombre des points entiers situés sur l'une des hyperboles
u = 1,2, ..., E(z), E(z) désignant la partie entiére de x. Tous
ces points se trouvent dans le domaine D, limité par I"hyper-
bole u¢ = z et par les deux droites u = 1, ¢v = 1, et récipro-
quement tout point entier contenu dans ce domaine se trouve
sur I'une de ces hyperboles. La fonction D (x) est donc égale
au nombre des points entiers du domaine D,. L’aire de ce do-
maine est égale &

X
f(f-——i)du — xlogx——-x?{—i ,
u ‘
1

et le contour a une longuéur plus petite que 4 x, de sorte qu’en
vertu de la proposition de Gauss

D(x) — (xlogax — x + 1)

est contenu entre —4(4x -+ 1) et 4(4x + 1); la fonction
x log x représente donc D (z) avec une erreur dont ’ordre ne
surpasse pas celui de z, donc

D(x) = xlogx + O{(x) . (1)

2. La méthode de Dirichlet.

Dirichlet* a réussi & améliorer considérablement ce résultat
de la maniére suivante: ‘ |

Par le point (V/z, /'), qui se trouve sur I’hyperbole équilatére
on construit une parallele & 'axe des u et une paralléle & 'axe
des ¢, de sorte que le domaine D, en question est divisé en trois
parties. Une de ces parties est un carré, et ’on peut immédiate-
ment calculer le nombre des points entiers qui y sont contenus.
Les deux autres parties contiennent le méme nombre de points
entiers par raison de symétrie, et comme on connait le nombre

L Berl. Abh. (1849), p. 69-83; Werke, I, p. 49-66.
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des points entiers du carré, il ne reste donc a calculer que le
nombre des points entiers du domaine D, limité par I’hyperbole
équilatére u¢ =z et par les trois droites ¢ — 1, uw=1,
u = \"x. Les points entiers de D, se trouvent tous sur I'une des
droites u — 1,2, .., E(V'2), et la droite u — A contient dans

D, exactement E <%> points entiers, de sorte que D, contient
X
> <7:>

1Sy

h entier

points entiers. Pour calculer approximativement D (z), il suffit
donc d’évaluer cette somme. Comme on peut calcul

=)

h entier

er la somme

au moyen de la formule sommatoire d’Euler avec le degré
d’exactitude voulu, on n’a qu’a évaluer la somme

= i) )

A entier

1 |
Comme chaque terme est en valeur absolue < 5, la valeur

. 1y ,—
absolue de la derniére somme est < +5V'z, de sorte que l'on

trouve la valeur de D (2) avec une erreur qui est au plus du
méme ordre que }/z. Si 'on pose

A{x) = D(x) — z(logx + 2C — 1)

2

C désignant la constante d’Euler, le résultat trouvé par Dirichlet
est que ’ordre de A(z) ne surpasse pas celui de 'z, donc

Alz) = O(Vx) . (2)

Il est facile de généraliser ce que nous venons de dire pour
Pappliquer & un domaine a k dimensions. Alors on remplacera
la figure u >1, ¢ > 1, ue <z par le domaine

u, >1, uy 21, ..., u, =21, Uy oo ) S
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et d(n) par le nombre d;(n) des décompositions de n en produit
de k facteurs; par exemple d,(4) = 10, parce que 4 peut étre
decomposé de 4 manieres différentes en produit des 4 facteurs
4,1, 1, 1 et de 6 maniéres différentes en produit des 4 facteurs
2,2,1,1. Comme M. Piltz* I’a montré, on peut donner & la fone-
tion -

n entier
la forme suivante
k—1

(x) —xzbkh +Ak(r),

h=0 ¢

ot les coefficients &, . ne dépendent pas de z, et ou

k—1
» k—2
Ap(x) = O(JC k (log z) ) )

Le résultat donné par la formule (2) est naturellement bien
meilleur que celui donné par la formule (1). Cependant Dirichlet
a réussi & améliorer encore son propre résultat, comme on le sait
par une lettre qu’il écrivit & Kronecker peu avant sa mort?:

« Seit unserm neulichen Gespréach auf der Fahrt von Ilsenburg
nach Harzburg ist es mir gelungen, die Funktion D (z), die ich
bisher nur mit einem Fehler der Ordnung V2 angeben konnte,
bedeutend in die Enge zu treiben. Die Auffindung des hiezu
dienenden Mittels, welches aller Wahrscheinlichkeit nach auch
auf die folgenden Fille anwendbar seyn wird, macht mir zwar
grosses Vergniigen, kommt mir aber in sofern zu. ungelegener
Zeit als ich dadurch von der Vollendung der hydrodynamischen
Abhandlung abgezogen werde, welche doch endlich fertig
werden muss. »

Quel résultat Dirichlet a-t-il trouvé et quelle méthode a-t-il
employée, nous ne le savons pas et probablement nous ne le
saurons jamais, parce que c¢’est un des secrets que Dirichlet
enlevé en pleine activité, a emporté avec lui. Cest d’autant plus

! Thése de doctorat (1881), Berlin.
? LeorunNe-DiricuLiwr, Werke, I, p. 407. Dirichlet emploie une autre notation pour la
fonction D (x).
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difficile de savoir quelle méthode il a employée, que nous connais-
sons déja cing méthodes générales pour améliorer les résultats
precédents, une méthode géométrique, une méthode arithmétique
et trois méthodes analytiques, dont une découle de I’étude des
variables complexes et les deux autres de 'étude des variables
réelles *,

3. — La méthode de Voronoi.

(est Voronoi * qui a découvert la méthode géométrique (1903).
Comme Dirichlet, il décompose le domaine D,, mais il le fait
d’une autre maniére. Il construit g tangentes a l’hyperbole
équilatére up = z, de sorte que le domaine est décomposé en
un polygone (de ¢ 4- 2 cotés) et en g + 1 segments. 1] calcule
approximativement le nombre des points entiers de chacun de
ces domaines; les points entiers qui pourraient se trouver sur
I'une des tangentes, sont comptés ou avec le polygone ou avec
I'un des segments. Il choisit le nombre q et la direction des
tangentes tels que I’erreur soit la plus petite possible. Son résul-
tat est

3
Az) = OV x log ) ; (4)

il est donc bien meilleur que celui de Dirichlet.

Avec la méthode de Dirichlet le domaine est décomposé en
3 parties, avec la méthode de Voronoi en q -+ 2 parties, et ce
qu’il y a d’intéressant dans cette derniére méthode est que ¢
croit indéfiniment avec .

Voronoi s’est rendu compte que sa méthode pouvait étre
appliquée non seulement dans le probleme des diviseurs, mais
dans bien d’autres problémes: on le sait par la fin de I'intro-
duction de son travail: _ \

« Il est aisé de généraliser, dit-il, la méthode exposée dans ce
mémoire et de I'appliquer aux recherches des valeurs asympto-
tiques de différentes sommes multiples. »

! Nous ne considérerons pas la méthode de Wigert (Math. Zs., 5 (1919), p. 310-318), parce
que jusqu’a présent on ne l'a employée que dans le probléme du cercle, d’autant plus que
Uordre de l’erreur trouvé par M. Wigert est un peu plus grand que Vordre trouvé par les
autres méthodes. .

T J. fur Math., 126 (1903), p. 21-282.
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M. Sierpinski ! applique la méthode de Voronoi au probléme
du cercle, et il trouve | ‘

P(x):O(\/;), (

done un résultat bien meilleur que celui de Gauss.

e~

4, — La méthode de Piltz.

C’est M. Piltz qui a trouvé la méthode arithmétique (1881).
‘Comme nous 'avons déja fait remarquer & propos de la méthode
de Dirichlet, il suffit dans le probléme des diviseurs de s’occuper

de la somme
X
> )
"\ &
<hSyE

h entier

ol pour abréger on a posé J(¢) = ¢ — E(¢) L

)
» . I B
Dirichlet se sert de la borne supérieure triviale 7\/90 pour

la valeur absolue de cette somme, mais M. Piltz a remarqué
que, si z est grand, les termes négatifs atténuent I'influence des
termes positifs. Il décompose I'intervalle (1, V/z) en intervalles
partiels, et il montre qu’en choisissant d’une maniére appro-
priée les points de division, la contribution de chaque intervalle
partiel & la somme en question est d'un ordre plus petit que la
longueur de Iintervalle, d’ott Pon déduit que la valeur absolue
de la somme considérée est d’un ordre inférieur a V/z.

L’idée fondamentale de la méthode de Piltz est done de réunir
beaucoup de termes |

X X . : x
b(5) + e R np(mthB_l) ,

de telle fagon que la valeur absolue de cette somme reste cepen-
dant relativement petite. Pour cela on doit pouvoir trouver une
borne supérieure de cette valeur absolue, ce qui se fait de la
facon suivante: |

Y Prace mat. fiz., 17 (1906), p. 77-114.




Y NP

12 J. G. VAN DER CORPUT

On choisit le nombre positif A ne contenant aucun des facteurs
de B tel que la plus grande valeur g de

I Bar Ba
’t +h 1

—Ah’,

ou £ est un des nombres 0, 1, ..., B— 1, soit la plus petite pos-
sible. On a alors

Al

est & peu pres égal a— + - dongc

Si g est petit 5

Py + t+ h
la somme en question est & peu prés égale a
B—1
Ah
Sz + 4.
plus exactement on a

B—1

(i) - §‘P< Ah)l““” g

h=—0

Calculons maintenant la somme

S

h=—0
¢’est-a-dire la somme
B—1
Y | Ah 4 ¢ . Bax
y ou > = .
2 7 B ¢ [
h=0

A chaque nombre entier 2 dans I'intervalle 0 < <B—1

correspond un nombre entier k& dans le méme intervalle et tel
que la différence

Ah + E(¢) —k
soit divisible par B, et la réciproque est vraie aussi, A ne conte-

nant aucun des facteurs de B. { (f) étant une fonction de période
1, on a

[Ah + ¢ . k+c—E(@)\ _ k+c— E() |
) = () = et g
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k4 ¢ — E(c)
B

puisque la partie entiére de est égale a 0. On a done

‘<:> > (1t

b — L) —

)-é

Ef) 1)

#
O

= c¢c— E(¢) —

w]tU =
v e

ce qui est en valeur absolue inférieur & 1. Il s’ensuit donc de (5)

B—1

> 4’(7;7)

| h=0

<4g+ 3.

(’est sur cette inégalité que repose la méthode de Piltz. Pour
une valeur donnée de ¢ on peut choisir A et B tels que le membre
de droite de cette derniere inégalité est beaucoup plus petit que
B, donc aussi beaucoup plus petit que la longueur de 'intervalle.

M. Piltz n’a jamais publié sa méthode. En 1901 il a écrit
deux lettres & M. Landau, pour exposer son procédé et pour
démontrer le théoréeme de Voronoi. Les démonstrations données
dans ces lettres, ne sont pas exactes, et ce n’est que depuis
quelques années que M. Landau * a réussi & en déduire approxi-
mation de Voronoi. Jusqu’a présent on n’a pu trouver aucun
résultat meilleur avec cette méthode, quoique M. Piltz pré-

tendit qu’il pouvait diminuer ’erreur, et la ramener & O <x§+g>
quelque soit le nombre positif .

9

9. — La méthode de Pfeiffer.

Le sort de la méthode de Piltz ressemble un peu a celui de la
troisitme méthode que nous allons exposer, celle de Pfeiffer .
L’inventeur a, il est vrai, publié sa méthode (1886); mais son tra-
vail manquait tellement de clarté et de précision qu’il est resté
sans influence sur le développement de la théorie analytique des
nombres, jusqu'a ce que M. Landau® en 1912 eiit trouvé

1 Gott. Nachr. (1920), p. 13-32.

“ Jahresbericht der Pfeifferschen Lehr- und Erziehungs-Anstalt zu Jena (1886).
® Wicn. Ber. (Ila), 121 (1912), p. 2195-2332 ; 124 (1915), p. 469-505.
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Perreur dans la démonstration et I'elit remise en ordre. Cette
méthode est basée sur ’6tude des séries de Fourier, On considére

Pintégrale
L :‘/‘fcpm(u)‘qpm(v) dudy |
D
ou I'on a posé

m
~
?]n(u) = /l _]L 2 2 COS Qhﬁu 5

h=—1

et ot le domaine D satisfait a des conditions trés générales.
L’idée fondamentale de la méthode est que, pour m croissant
indéfiniment, ®, tend vers le nombre des points entiers du
domaine D, & condition que les points entiers, situés sur le contour
de D, soient comptés d’une fagon déterminée; par exemple, si le
contour du domaine a une tangente en un point entier, on ne
comptera ce point qu’a demi.

Avec la méthode de Pfeiffer, M. Landau démontre les résul-
tats de Voronoi et de Sierpinski, donc (3) et (4) . Dans le pro-
bléme du cercle il en déduit non seulement une relation conte-
nant le symbole O de Landau, mais encore une relation contenant
le symbole O de Hardy-Littlewood. Il montre en effet que pour
chaque nombre : positif

1 2
P(x) — Q<xrs) o

c’est-a-dire que pour x croissant indéfiniment le quotient,

ne tend pas Veré 0. | |
St 3 ne dépend pas de z, la relation

P) = 0(xF)

1, : 1
est valable ‘pour g > 3, d’aprés (4), mais fausse pour 8 < e

Y Annali di Mat. (Tortolini), Rome (3) 20 (1913), p. 1-28 ; Gott. Nachr, (1915), p. 148-160.
? Wien. Ber. (11a) 124 (1915), p. 469-505. -
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En effet, si la relation était juste pour 8 < +» on'pourrait choisir
P (x)

1
.’1'4

le nombre positif ¢ de telle facon que 8 < 71 — ¢, et alors

3

tendrait vers O pour z croissant indéfiniment. La limite inférieure

. .- 1 1
de I’exposant (3 est donc contenue dans I'intervalle — < ¢ < T

=V =
La détermination exacte de la limite inférieure est un des pro-
blémes les plus intéressants de la théorie des nombres, mais on
n’y est jusqu’ici pas encore arrivé. |

M. Landau * applique aussi cette méthode & d’autres pro-
blémes; entre autres il en déduit les approximations analogues
pour une ellipse. D’autres applications ont été données par
Cauer ?, Hammerstein * et moi-méme *.

Comme le fondement de la méthode de Pfeiffer est une iden-
tité, on ne doit pas s’étonner de pouvoir en déduire non seule-
ment des approximations, mais aussi des identités. Par exemple,
s1 z est un nombre positif, non entier, on trouve?

P(x) = \/ZE \"/(”_) J, 22V nx) (6)
n=—1 i

et ®

A(x) = % + \/ZE \d/(%) L(2zV nr) | (7)

ou r (n) désigne le nombre des solutions entiéres de u? -~ ¢* — n,
et 'on a ‘

/ cos xu sin — du = Y, (22) — H, (2x) ;

IJ (,l‘) _ . ”
1]

Al

J, (z) est la premiére fonction de Bessel de premier ordre, Y, (aé)
est la deuxiéme solution habituelle de Iéquation différentielle

Wien. Ber. (11a) 124 (1915), p. 469-505.

Thése de doctorat (1914), Geettingue.

Thése de doctorat (1919), Geettingue.

Nieuw Archief (2) 13 (1920), p. 125-140.

Lanvau. 66t Nachr. (1920), p. 109-134.
Rocosinskr. Thése de doctorat (1922), Geettingue.

(= I I -
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de Bessel avec 1 comme paramétre, et H, (z) est la fonction
cylindrique

D) f; —xt
Hoe) == [ L a.

ve=—1

= _,
1

St z est entier, on doit remplacer dans (6) et (7) P(z) par
P (z) — 4 r(x), et A(x) par A () — = d(@).

Des relations (6) et (7), qui ont 6té découvertes par Voronoi !
et Hardy *, on déduit facilement les relations déja mentionnées
plusieurs fois de Voronoi et de Sierpinski *.

Comme je I'ai déja fait remarquer, 'ordre de grandeur exact
de P (x) n'est pas connu, d'ailleurs 'ordre de A(x) ne 'est pas
non plus. Par contre I'ordre exact des valeurs moyennes des
fonetions (A (1))* et (P (1))* dans Dintervalle 1<t <z est
connu. kin effet comme M. Cramér® ’a déduit de (6) et (7)
(il s’est servi méme de deux relations plus simples), on a pour
chaque nombre positif ¢

et

ou y, et y, désignent des nombres positifs constants. La valeur

moyenne des carrés des fonctions A (z) et P(z) a donc le méme

Ax) ., P(r)
et

4 4
Vie Vix
pas vers zéro pour z croissant indéfiniment. Nous pouvons done
écrire

ordre que la fonction V'z, de sorte que ne tendent

A(r) = gz(\)?) et P(x) = _(.2(\/4.;) .

Y Ann. de PEc. Norm. (3) 21 (19041), p. 207-268 et p. 459-534; Verh. IIl. intern. Math.
Kongresses in Heidelberg (1904), p- 241-245. Cf. Haroy, Lond. M. S. Proc. (2) 15 (1916),
p. 1-25 et S[KRPI;SKI. Prace mat.-fiz., 18, p. 1-59.

2 Quart. J., 46 (19151, p. 263-283.

¥ LANDAU. G6tt. Nachr. (1915), p. 161-171; Minch. Ber. (1915), p. 317-328 ; Math. Zs. 5
(1919), p. 319-320. %

¢ Math. Zs. 15 (1922), p. 201-220.




Si ’on emploie I’inégalité connue de Schwarz

b 2 b :
| (ff(t)dt),g (b —a) [Fo)de,

a

ou 'on suppose b>a, on trouve que la valeur moyenne des
- . 4

fonctions [A(z)| et | P(x)] ‘est au plus du méme ordre que V'z.

6. — La méthodede Landau.

La méthode basée sur 1'étude des fonctions de variables
complexes s’appuie sur le lien qui existe entre le nombre des
points entiers de certains domaines et la convergence de cer-
taines séries de Dirichlet. Nous n’avons & considérer ici que les
séries de Dirichlet ordinaires, c’est-a-dire celles du type

~ Si cette série converge en un point s,, elle converge en chaque
point s ayant une partie réelle plus grande. Pour le démontrer,
posons -

donc

Si ¢ et w sont des nombres entiers (w > V'Z 1), on a

w—1

oW
ns nS—s 2 | 0’5 2 / (n + 1 s-—so o

n=y n=y n—-u—-l

done

w—1 - ] . |
2 2 ( . + i — ‘F‘,_1 (8)
D R P ) A A

L’Enseignement mathém., 23¢ année, 1923. C 2 |
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les a, étant des coefficients constants et s une variable complexe.

e ot st~y Ay S e e e
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On a
n-41
1 1 __(S_S)/j_ du
75— (n - 1)5=5 - 9 WS+’
n
donc
1 1 n4-1
[
_ <|s—s,]| . f ., 9)
’ns—so (n 4 ,“.s'——.s'(,’ = | 0, up-}—l (

n

p désignant la valeur réelle de s — so. En vertu de la convergence
de la série en question en so, le nombre F, est borné, donc en
valeur absolue plus petit qu'un nombre constant A; on a donc
d’apres (8) et (9)

" ‘
a, du A A
— Als — ) — —_— 10
Ens < Als—s,| fup+1+wp+vp (10)

Comme p est positif (parce que la partie réelle de s est plus
grande que celle de s,), 'expression finale tend vers 0 pour ¢
croissant indéfiniment, de sorte que la série de Dirichlet en
question converge au point s.

Il s’ensuit que pour une série de Dirichlet, on a trois cas
possibles: convergence en chaque point, comme par exemple
pour la série

[——

- 1

21 n.
b

nS

n=1

divergence en chaque point, comme par exemple pour la série

w
n!

N
n®

n=1
ou bien il y a une droite paralléle & ’axe imaginaire telle que la
série diverge & sa gauche et converge a sa droite. L’abscisse de
cette droite s’appelle 1’abscisse de convergence de la série, et
il y a une relation simple entre cette abscisse « et Iordre de
grandeur de la fonction

S (x) :E a, ,

1§n__<:x
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En effet, si « >0, on a pour chaque nombre ¢ positif

S(x) = O(x*T¢) ,

et inversément, si
S(x) = O(@B) ; (11)

I’abscisse « de convergence est < 3. Pour démontrer la premiére
de ces propriétés, nous appliquerons I’inégalité (10) en y posant
s=0, 0p=1, w = E(x), de sorte que le membre de gauche de
cette inégalité est égale & la valeur absolue de S(z). Nous devons
poser s, = « -- &, parce que la série converge en ce point ;
alors p = — (o + ¢), done

|S(x)] < A.(a—+ s)fua'l-a_l du + Aa®T¢ + A : 2Ax%TE,
1

Pour démontrer la seconde propriété, il suffit de montrer que
la série de Dirichlet converge pour chaque nombre réel s > f3,
¢’est-a-dire il suffit de montrer que pour chaque nombre
s =+ e(e > 0) le membre de gauche de la relation (8) tend
vers 0, si ¢ croit indéfiniment. Posons so = 0, donc p = s— s,
— 3 - ¢. Le nombre F, est égal a S(n) et d’aprés (11) 1l existe
un nombre constant A tel que la valeur absolue de F, est infé-
rieure & Anfet & A(n + 1)°, donc inférieure a uf, u désignant
un nombre quelconque dans Uintervalle n < u<n -+ 1.

Il s’ensuit

T du ' du " du
anI f FEs <A[ uB.——uB_i_E_*_1 = Af T

n n

D’apres (8) et (9) on a

VLD
n

n—y

w
du A A
<A-|B+El'f;;g:‘j;+;€+v—ew
14

et I’expression finale tend en effet pour chaque nombre positif
e vers 0, si ¢ croit indéfiniment.

De ces considérations on déduit un lien entre nos problémes
et la convergence de certaines séries de Dirichlet. Comme
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exemple nous prendrons le probléme du cercle. Le nombre des
points entiers du cercle u? + ¢* = z est égal & la somme

‘;, r(n) ,

0L<:7L__§_x

r (n) désignant le nombre des solutions entiéres de I’équation
w4 ¢* = n. D’aprés le résultat de M. Sierpifiski la fonction
mx représente cette somme avec une erreur dont l’ordre ne

surpasse pas celui de V'z, done
E (r(n) — 7)) = O<x3) ,

1;<_Il§$

n entier

de sorte que la série de Dirichlet

g r(n) i

. 1 bt x
a une abscisse de convergence < 7 - Sl nous pouvons démontrer

directement ce théoreme, nous aurons montré que pour chaque
nombre ¢ positif nous avons la relation

S o) —m = ol57) |
1§n§x

n entier

done

1
Plx) = r(n) —nx = O(xé_i_E) .

1%.’1)

n entiel
M. Landau® a publié en 1912 une méthode au moyen de
laquelle on peut trouver une démonstration directe dans ce cas
et dans bien d’autres. Cette méthode est applicable pour des
domaines & k£ dimensions pour lesquels la série correspondante
de Dirichlet satisfait entre autres & une équation fonctionnelle
analogue & celle de la fonction £ (s) de Riemann. Il applique cette

1 Gote, Nachr. (1912), p. 687-771; (1915), p. 209-243 ; (1917), p. 96-101.
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méthode entre autres! aux problemes concernant Pellipsoide
a k dimensions °.

La méthode de Landau se sert, il est vrai, de propositions
exigeant des connaissances mathématiques assez profondes,
mais elle conduit parfois trés rapidement au but. Par exemple
M. Landau ® n’a besoin que de 2 pages pour démontrer la pro-
position de Sierpinski

¥l = O(\?’/;) '

tandis que M. Sierpinski* a besoin d’environ 40 pages pour la
démonstration du méme théoréme par la méthode de Voronol.

Un des grands avantages de ’emploi des variables complexes
est qu’il conduit non seulement & des résultats contenant le
symbole O, mais encore a des résultats contenant (.

MM. Landau®, Hardy®, Wigert™ et Cramer® ont appliqué
la théorie des nombres complexes au probleme des diviseurs
et & celui du cercle. M. Hardy a montre:

4 4
P(x) = Q(\/l 1ng> et Afr)y = Q(\/xlogx log logx) :

si «, désigne la limite inférieure de I’exposant 3% pour lequel
la relation

Ayl) = O (Pk)

est encore juste, on a

1 1
T=%m=3

| E—1 k— 2
9 2/ éakg 2

A
A
A

%3

A

1
3

En admettant Phypothése de Riemann que toutes les racines

1 Gott. Nachr. (1917), p. 102-111; Einfithrung in die elementare und analytische Theorie
der algebraischen Zahlen und der Ideale (1918), p. 131; Math. Zs., 2 (1918), p. 52-154.

2 Berl. Ber. (1915), p. 458-476 ; Wien. Ber. (1la), 12% (1915), p. 445-468.

38 Math. Zs., 5 (1919), p. 319-320.

4 Prace mat. fiz., 17 (1906), p. 77-114.

5 Batt. G., 51 (1913), p. T3-81; Minch. Ber. (1915), p. 317-328 ; Gott. Nachr. (1915), p. 161~
171 ; Math. Zs., 5 (1919), p. 319-320.

6 Quart. J., 46 (1915), p. 263-283; Lond. M. S. Proc. (2), 15 (1916), p. 1-25 et p. 192-213;
18 (1919), p. 201-204.

7 Acta Math., 37 (1914), p. 113-140. Cf. LANDAU, Gott. gelehrte Anzeigen, 171 (195),
p. 377-41%.

8 Ark. for Mat., Astron. och Fys., 21 (1922).
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complexes de la fonction £(s) se trouvent sur la droite d’abscisse
1 . “ " :
5> M. Landau® a déduit d une proposition due & M. Littlewood ®

1
qu’aucun des nombres %yy a4, ... €66, ne surpasse 7

1. — La méthode de Van der Corput® et de Vinogradoff*.

Finalement nous traiterons une méthode que M. Vinogradoft
et moi avons trouvée indépendamment 'un de DPautre. Plus
d’un mois aprés avoir tenu cette conférence, j’ai pour la pre-
miére fois appris le nom de M. Vinogradoff et les remarques
faites dans cet article au sujet des résultats trouvés par lui
ont été ajoutées au texte lors de la correction de la premiére
épreuve.

Avant de passer a la méthode, je veux indiquer comment
1’y suis arrivé peu a peu par 'étude des méthodes de Voronoi,
de Pfeiffer et de Piltz.

Comme nous I’avons déja dit a propos des méthodes de Diri-
chlet et de Piltz, nous n’avons dans le probléme des diviseurs &
nous occuper que de la somme

sy

h entier

De méme dans le probléme du cercle nous n’avons & consideé-
rer que la somme

3 uva=m) .
<n<l/ L

h entier

L Gatt. Nachr. (1912), p. 728.

2 C. R., 154 (1912), p. 263-266.

8 These de doctorat (1919), Leiden ; Math. Ann., 81 (1920), p. 1-20; Math. Zs., 10 (1921),
p. 105-120; Math. Ann., 84 (1921), p. 53-79; 87 (1922), p. 39:65. Un autre article paraitra
bientdt dans les Math. Ann. et un aatre encore dans la Math. Zs. Cf. LANDAU-Van der
Corprur, Gott. Nachr. (1920), p. 135-171.

4 Journal de la Soc. math. Charkov (1917) ; Bnil. de U'Ac. des Sciences de Russie, Pétrograd
(1917), p. 1347-1378 ; Thése de doctorat (1920), Pétrograd. Les articles de M. Vinogradoff ont
été écrits dans la langue russe. "
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Pour calculer le nombre des points entiers d’un domaine quel-
conque, il suffit de calculer la somme

> dif(n) -

agnéb

n entier
0 = f(u) ou u = f(¢) étant ’équation d’une partie du contour.
Jusqu’a ces derniéres années la méthode de Pfeiffer était appli-
quée & peu de problémes seulement, et la méthode de Voronoi
a deux seuls problémes, celui des diviseurs et celui du cercle,
de sorte que dans I’emploi de cette derniére méthode on posait

toujours f(u) zgou f(u) = Vz— w?. J’ai montré que ces
deux méthodes pouvaient étre appliquées a chaque fonction
f(u) remplissant la condition suivante :

f(u) est réelle et deux fois dérivable dans Iintervalle
a<u<b, (a+1<0b), la deuxiéme dérivée étant umi-
oscillante (¢’est-a-dire monotone), toujours positive ou
toujours négative.

CI

Les deux méthodes donnent dans ce cas le méme résultat,
a savoir qu’il y a une constante absolue ¢ telle que 1’on aif

b 1
3 1 1
- (f(n)) ]| < ¢ | ") P du + ' + =) . (12
= <f et T V‘lf'(">l> "
n:nti_:e—r ’

Il est évident que ’on peut maintenant calculer approxima-
tivement le nombre des points entiers dans des domaines satis-
faisant & des relations trés générales. Nous prendrons comme
exemple le probléme des diviseurs, ¢’est-a-dire nous approxime-

rons la somme
Q) x
2 i)
1 <h<Va
h entier

Nous décomposons cette somme en deux sommes partielles

) n K
2 i) o 3G
3
1< h<Vz :/ScShgx/a}

h entier h enlier
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Puisque || < —;, la valeur absolue de la premiére somme par-
tielle est < %\/x— Pour un z suffisamment grand \/z + 1 <\/z,

3
de sorte que la relation C’ est remplie pour ¢ = V'z, b = Vi,
f(u) = ZCT La valeur absolue de la deuxiéme somme partielle

est donc plus petite que

Vz L
a2 1 1
— ) d
c<f <u0> w 4 \/ = - - >

xVax x
c<1 VE VF loga + —— Vi 4 -
== —- x logx f——— —_— P
6 T i)
de sorte que I’erreur dans le probléme de diviseurs ne surpasse

3
pas, en effet, 'ordre de la fonction V 'z log z.
La méthode de Piltz ne donne pas seulement la proposition
enoncée, mais encore un résultat plus général. De la méthode de
Piltz il suit que 'inégalité (12) est valable non seulement pour

la fonction ¢ (¢) = ¢— E(v) —%, mais encore pour chaque

fonction ¢ (¢) remplissant la condition suivante:

¢ (v) est réelle et périodique de période 1, unioscillante
Y dans 'intervalle 0 < ¢ < 1, et satisfait a
B 1
[d(v)] <1 0sv<1), b(v)dy = 0 .
/

Si I’on part de cette supposition, il est trés facile de saisir le
principe de la nouvelle méthode. De la supposition B il découle
que ¢ (¢) est développable dans la série de Fourier suivante

[v<]

$(v) = 2 a, gATEW on a, = 0,
m=—-—w !

done

o

E L(f(n)) = E 2 amezn;ni/(n),

agngb aéngb m=——ao

n entier n entier
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done
E ({J(f(n)) é 2 !aml ' e?m’r.'i/(n) , (,13)
a<n<b m=—w aln<b
n—entigr n entier

étant admis la convergence de la derniere double sommation.
Si f(u) satisfait & la condition C/, mf(u)y satisfait également.
Si done de la condition C’ une borne supérieure peut étre déduite
pour la valeur absolue de la sommation

G2mif(n) (14)
a:<:/z éb

n entier

on trouve également une borne supérieure pour tous les termes
de la sommation dans le membre de droite de (13), de sorte que
I’on obtient ainsi une borne supérieure pour le membre de gauche
de cette inégalite.

Le probléme essentiel réside donc dans la possibilite d’approxi-
mer aussi prés que possible la somme (14), et ¢’est grdce a une
équation fonctionnelle approximative remarquable que la chose
est possible. Puisque f’(u) dans Vintervalle a<u<10 est
supposé constamment positif ou constamment négatif, f'(u)
est une fonction unioscillante de u. Si A désigne le plus petit et
B le plus grand des nombres f(a) et f(b), & chaque ¢ dans
I'intervalle A < ¢ < B correspond un nombre r, univoquement
déterminé par les relations f'(n,) = ¢, et a < n, < b. L’équation
fonctionnelle approximative établit que la somme cherchée (14)
est donnée avec une trés grande approximation par 'expression

j—_%‘ . e'?.rti(f(nv)—-vnv)

Ty emi "
A<ov<B \/lf )|
¢ entier

ol ’on doit prendre le signe + ou le signe —, selon que §"(u)
dans Dintervalle a < u < b est constamment positif ou con-
stamment négatif.

Pour approximer la somme (14), il suffit donc de calculer cette
derniere expression.
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Si nous employons pour la valeur absolue de cette der-
niére somme la borne supérieure triviale

1
A<,<B \/lf"(nv)l

¢ entier

(16)

nous obtenons & peu prés la méme approximation pour la somme
(14), et si nous substituons ce résultat, nous trouvons préci-
sement l'inégalité (12), de sorte que cette méthode fournit le
méme résultat que la méthode de Piltz. Mais elle peut fournir
encore un meilleur résultat. Nous avons employé pour la somma-
tion (15) I’approximation triviale (16). Il se pose maintenant
la question suivante: est-il possible de remplacer cette appro-
ximation triviale par une meilleure? A cette question il a été
répondu affirmativement, tant par M. Vinogradoff que par
moi. Je suppose que M. Vinogradoff a développé une propre
méthode, tandis que moi j’ai appliqué la méthode de Weyl 1,
entre autres dans le cas ou f(u) satisfait non seulement a la
condifion C’) mais encore a la condition suivante:

f(u) est dans Dintervalle a <u<b k -1 fois dérivable
(k>2); on a

)] < ) P (17)

(n > 0), et dans I'intervalle a <u<b chaque produit
D () . Bt () L Pt () (18)

ou les hy, hy, ..., hy—y désignent des nombres non-

négatifs dont la somme égale k£ —1, est en valeur ab-

solue au plus égal & |f"(u)f “*" .

Les conditions G’ et D étant remplies, on peut trouver pour la |
somme (15), donc aussi pour la somme (14) une meilleure approxi-
mation. Dans ce cas on peut remplacer la proposition énoncée

1 WeyL. Gott. Nachr. (1914), p. 234-244; Math. Ann., 77 (1916), p. 313-352 et Math. Zs.,
10 (1921), p. 88-101, ,
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par la proposition suivante: Les conditions B, C’ et D étant
vérifiées, il existe un nombre y dépendant au plus de £ et un
nombre positif » dépendant au plus de k et de n avec la pro-
priété

= o 1 1
n < [ /" (u) |? du -+ — _______>
a<n2<b v Y(f . Virt@1 - Vi) |

n entier (19)

L’exposant % est donc remplacé par un nombre plus grand.

Avec cette inégalité on peut améliorer tous les résultats en
question obtenus jusqu’ici contenant le symbole O de Landau.

g 1
On trouve par exemple qu’il existe une constante @ < - telle

que dans le probleme des diviseurs ’ordre de l’erreur ne sur-
passe pas celui de 2%; j’ai montré qu’on peut prendre méme

0 < 100 Donc dans le probleme des diviseurs I’exposant du

33

, . 1
terme representant Pordre de ’erreur est compris entre - et 75 ;

donc — < 2 < 105 00

Comme exemple je prouverai que dans le probléme du cercle
9 . y a 1 9 r*a
’exposant analogue est inférieur a 5. Gomme nous avons déja

fait remarquer, il suffit de démontrer

}: ' “P(V/m) = 0(a®) ,

® désignant une constante <1. Nous appliquerons notre pro-

position, en posant ¢« = 1, b = x f(u) =V'z—u. Nous

devons supposer z > 8, donc « + 1506 de cette maniére la
condition C' est remplie. En choisissant z assez grand, la condi-

tion D est remplie pour £ = 4, n = %. En effet, dans 'inter-

valle 1§u§\/%x, Pordre de f"(u), f"(u), fV(u), f'(u) est.
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1 1
p x\/ , - Dans (17)

Pordre du premier membre est done ; et celui du second membre

égal respectivement & ¢

|~

1
Y Wit
Aits)

[
Y0

de sorte que, x étant choisi suffisamment grand, le premier
membre est plus petit que le second. L’ordre du produit (18)

est
1

S Oat )+ (a5 (o) 2
X

a cause de %, + h, 4+ h, = 3, de sorte que, x étant choisi suffi-
samment grand, la valeur absolue de ce produit est plus petite

5 1
= ol e , .
que | f"(u) | 6, dont lordre est égal &
t 1
1 %™ &
x? 6 2,112

Les conditions sont ainsi remplies; 'inégalité (19) a done lieu,
et 1l s’ensuit

e

= o () 4 5) 2o ).

Dansle probléme du cercle ’ordre de1’erreur ne surpasse pas celui

de z®, ® désignant le plus grand des deux nombres L,

3 2
1 1
et ~ <dono © <7_;>.

> (Ve =0

n entier

Nous sommes arrivés au terme de notre exposé. Le choix
entre les différentes méthodes dont nous venons de parler dépend
dans chaque cas particulier du probléme posé et du degré
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d’exactitude demandé. Si une premieére approximation est
suffisante, on peut se contenter de la méthode de Gauss ou de
celle de Dirichlet. Pour les approximations contenant Q ef
aussi dans les problemes concernant des domaines & £ dimensions,
Pemploi des variables complexes est préférable; jusqu’ici en
effet dans les questions de cette nature la méthode de Pfeiffer
n’est appliquée qu’a des cas particuliers, et les autres pas du
tout. La méthode de Van der Corput et de Vinogradoff n’est
encore qu’a son stade initial et elle sera en tout cas encore
applicable & beaucoup d’autres problémes. Je suis persuadé
qu’elle est encore susceptible d’amélioration. J’ai en effet I'im-
pression que la méthode de Weyl, appliquée a la somme (15),
ne donne pas la derniére approximation possible, qu’au con-
traire, la valeur absolue de (15) est beaucoup plus petite que
la borne trouvée avec la méthode de Weyl. Et chaque améliora-
tion de I’approximation de cette somme donne une amélio-
ration du résultat final.

D’aprés une communication qu’il a faite par écrit, M. Vino-
gradoff a démontré que dans le probléme des diviseurs la
limite inférieure de l’exposant dans le terme de erreur est

b) . y . . y . , .
gﬁ et il n’est pas impossible que sous peu il sera démontré

. . . ;e r by 1
que cette limite inférieure est égale & 7
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