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MÉTHODES D'APPROXIMATION
DANS LE CALCUL DU NOMBRE DES POINTS

A COORDONNÉES ENTIÈRES 1

PAR

J. G. yan der Corput (Fribourg, Suisse et Groningue).

1. — La méthode de Gauss.

Dans les écrits laissés par Gauss 2 on trouva les fragments
de deux articles qu'il avait l'intention de remettre à la Société
des sciences de Göttingue dans les années 1834 et 1837, mais qu'il
n'a pas achevés. Dans ces fragments Gauss déterminait au
moyen des points à coordonnées entières l'aire d'une figure, et
spécialement d'un cercle dont le centre coincide avec l'origine
des coordonnées. Si le rayon est égal à 10, lOl/ÏO, 100 ou
ÎOOI/TO, Gauss a calculé que le cercle contient

317 3149 31A17 ou 314 197

points entiers (c'est-à-dire points à coordonnées entières),
tandis que l'aire du cercle, à une demi-unité près, a pour valeur

314 3142 31 416 ou 314 159

de sorte que la différence est relativement petite. Dans cet
article, lorsque nous parlerons des points entiers d'une figure,
nous voulons parler des points à coordonnées entières situés à
l'intérieur et sur le contour de cette figure.

1 Conférence donnée à la première Réunion mathématique des Universités de la Suisse
romande, à Genève, le 17 février 1923, par M. J. G. van der Corput, professeur à l'Universitéde Fribourg (Suisse). — Depuis le semestre d'été 1923 M. van der Corput occupe l'une deschaires de mathématiques de l'Université de Groningue. Rèd.

2 Werke, II, p. 269-291.
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Nous pouvons nous attendre à ce que le nombre des points

entiers d'une figure soit approximativement égal à l'aire de
cette figure. Etant supposé que le contour de la figure a une
longueur déterminée Z, Gauss démontre que la différence entre
ces deux quantités est comprise entre — 4(Z + 1) et 4 (Z + 1).
La démonstration qu'il en a donnée est la suivante:

Soit r le nombre des carrés tels que leur centre ait des
coordonnées entières, leurs côtés aient l'unité pour longueur, et à
l'intérieur desquels se trouve au moins un point du contour.
Le nombre des points entiers de la figure est plus petit que l'aire
de la figure augmentée de r, mais plus grand que cette aire,
diminuée de r, de sorte que la différence entre le nombre des

points entiers et l'aire de la figure est comprise entre —r et r.
Une portion du contour qui appartient à plus de quatre carrés
différents contient au moins deux points distants de plus d'une
unité. Si donc r est plus grand que 4n, n étant entier, il y a sur
le contour n + 1 points tels que la distance entre deux points
consécutifs est plus grande que 1. Alors la longueur du contour
est plus grande que /2, et comme nous pouvons choisir 4 {n -f- 1)

plus grand ou égal à r, r est plus petit que 4 (Z + 1), et la
proposition de Gauss est démontrée.

Nous pouvons considérer comme cas particulier celui du
cercle u2 -f- c2 — &, u et v étant des coordonnées rectangulaires.
Soit P (x) la différence entre le nombre des points entiers du
cercle et son aire. En vertu de la proposition de Gauss la valeur
absolue de P (x) est plus petite que 4 (2 v:\/x + 1). P (x)
est donc au plus du même ordre que la fonction \/x, ce que l'on
écrit

P(.X) O(VU)

0 désignant le symbole connu de Landau.
Nous allons traiter maintenant un autre problème, celui des

diviseurs. Le nombre d(n) des diviseurs du nombre entier positif

n ne peut pas être représenté approximativement par une
fonction simple. Par contre on peut trouver une expression
simple pour représenter

D(x) '

1
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d'une manière approchée. En effet, sur l'hyperbole équilatère
uv n se trouvent exactement d(n) points entiers, car à chaque
diviseur S de n correspond un point à coordonnées entières S

et j et réciproquement. La fonction D (x) est donc égale au

nombre des points entiers situés sur l'une des hyperboles
uç 1, 2, E(#), E(#) désignant la partie entière de x. Tous
ces points se trouvent dans le domaine limité par l'hyperbole

uv x et par les deux droites u 1, v 1, et
réciproquement tout point entier contenu dans ce domaine se trouve
sur l'une de ces hyperboles. La fonction B(x) est donc égale

au nombre des points entiers du domaine Dr L'aire de ce

domaine est égale à

ïp

J* — 1^ du n= x log x — x -J- 1

et le contour a une longueur plus petite que 4 x, de sorte qu'en
vertu de la proposition de Gauss

D (x) — [x log x — x -f- 1)

est contenu entre —4(4 x -h 1) et 4(4# +1); la fonction
x log x représente donc D(#) avec une erreur dont l'ordre ne

surpasse pas celui de #, donc

D (x) HZ xlogx + O (x) (1)

2. — La méthode de Diriehlet.

Dirichlet1 a réussi à améliorer considérablement ce résultat
de la manière suivante :

Par le point (\/#, 1/#), qui se trouve sur l'hyperbole équilatère
on construit une parallèle à l'axe des u et une parallèle à l'axe
des e, de sorte que le domaine D1 en question est divisé en trois
parties. Une de ces parties est un carré, et l'on peut immédiatement

calculer le nombre des points entiers qui y sont contenus.
Les deux autres parties contiennent le même nombre de points
entiers par raison de symétrie, et comme on connaît le nombre

1 Bcrl. Abh. (1849), p. 69-83; Werke, II, p. 49-66.
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des points entiers du carré, il ne reste donc à calculer que le
nombre des points entiers du domaine D2 limité par l'hyperbole
équilatère uvxetpar les trois droites c 1, 1,
« \/x.Les points entiers de D, se trouvent tous sur l'une des
droites u1, 2, E (l/ x),etla droite contient dans
D2 exactement E (j^jpointsentiers, de sorte- que D2 contient

E

1 h<^Y%

h entier

points entiers. Pour calculer approximativement D(a;), il sulFit
donc d'évaluer cette somme. Comme on peut calculer la somme

i Vx
h entier

'X_
__

1

h ~2

au moyen de la formule sommatoire d'Euler avec le degré
d exactitude voulu, on n'a qu'à évaluer la somme

h entier

Comme chaque terme est en valeur absolue < la valeur
absolue de la dernière somme est £~\/x, de sorte que l'on
trouve la valeur de D {x) avec une erreur qui est au plus du
même ordre que \/x. Si l'on pose

A{x)D(x) — x(logx + 2C — 1)

C désignant la constante d'Euler, le résultat trouvé par Dirichlet
est que l'ordre de A(x)nesurpasse pas celui de Vx, donc

A(x) O (2)

^

Il est facile de généraliser ce que nous venons de dire pour
l'appliquer à un.domaine à k dimensions. Alors on remplacera
la figure u1,c 1, uv xpar le domaine

"' 1 ' "2 ^ 1 ••• "k L 1 Uk<X
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et d(n) par le nombre dk(n) des décompositions de n en produit
de k facteurs; par exemple d4(4) 10, parce que 4 peut être
décomposé de 4 manières différentes en produit des 4 facteurs
4, 1, 1, 1 et de 6 manières différentes en produit des 4 facteurs
2, 2, 1, 1. Comme M. Piltz1 l'a montré, on peut donner à la fonction

=2d^n)
i < « a;

n entier

la forme suivante
k—1

D^a;) bk,h(]o+ V'r) •

h =0

où les coefficients bk.h ne dépendent pas de x, et où

0\œ k (log#)*

Le résultat donné par la formule (2) est naturellement bien
meilleur que celui donné par la formule (1). Cependant Dirichlet
a réussi à améliorer encore son propre résultat, comme on le sait
par une lettre qu'il écrivit à Kronecker peu avant sa mort2 :

« Seit unserm neulichen Gespräch auf der Fahrt von Ilsenburg
nach Harzburg ist es mir gelungen, die Funktion D(x), die ich
bisher nur mit einem Fehler der Ordnung \/x angeben konnte,
bedeutend in die Enge zu treiben. Die Auffindung des hiezu
dienenden Mittels, welches aller Wahrscheinlichkeit nach auch
auf die folgenden Fälle anwendbar seyn wird, macht mir zwar
grosses Vergnügen, kommt mir aber in sofern zu ungelegener
Zeit als ich dadurch von der Vollendung der hydrodynamischen
Abhandlung abgezogen werde, welche doch endlich fertig
werden muss. »

Quel résultat Dirichlet a-t-il trouvé et quelle méthode a-t-il
employée, nous ne le savons pas et probablement nous ne le
saurons jamais, parce que c'est un des secrets que Dirichlet
enlevé en pleine activité, a emporté avec lui. C'est d'autant plus

1 Thèse de doctorat (1881), Berlin.
» LnjKUNE-DiKiciiLhT, Werke, II, p. 407. Dirichlet emploie une autre notation pour lafonction D (x). r
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•difficile de savoir quelle méthode il a employée, que nous connaissons

déjà cinq méthodes générales pour améliorer les résultats
precedents, une méthode géométrique, une méthode arithmétique
et trois méthodes analytiques, dont une découle de l'étude des
variables complexes et les deux autres de l'étude des variables
réelles h

Laméthode de

C'est Voronoï2 qui a découvert la méthode géométrique (1903).
Comme Dirichlet, il décompose le domaine D,, mais il le fait
d une autre manière. Il construit tangentes à l'hyperbole
équilatère uv x,desorte que le domaine est décomposé en
un polygone (de q+ 2 côtés) et en + 1 segments. Il calcule
approximativement le nombre des points entiers de chacun de
ces domaines; les points entiers qui pourraient se trouver surl'une des tangentes, sont comptés ou avec le polygone ou avecl'un des segments. Il choisit le nombre q et la direction des
tangentes tels que l'erreur soit la plus petite possible. Son résul-
tat est

3

A(„e) O (l/7 xlog ; (;-!)

il est donc bien meilleur que celui de Dirichlet.
Avec la méthode de Dirichlet le domaine est décomposé en

3 parties, avec la méthode de Voronoï en -f 2 parties, et ce
qu il y a d'intéressant dans cette dernière méthode est que qcroît indéfiniment avec x.

Voronoï s'est rendu compte que sa méthode pouvait être
appliquée non seulement dans le problème des diviseurs, mais
dans bien d'autres problèmes; on le sait par la fin de
l'introduction de son travail:

« Il est aisé de généraliser, dit-il, la méthode exposée dans ce
mémoire et de l'appliquer aux recherches des valeurs asympto-
tiques de différentes sommes multiples. »

1 Nom», considérerons pas la méthode de Wigert 5 (1919), p. 310-318) parceque jusqu ai present on ne l'a employée que dans le problème du cercle, d'autant plus quetrouvé par M- wi«ert est » ^ tro„v4pl^r
2 J. für Math., 120 (1903), p. 241-282.
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M. Sierpinski1 applique la méthode de Voronoï au problème
du cercle, et il trouve

3

P (x) o(\/x) (4)

donc un résultat bien meilleur que celui de Gauss.

4. — La méthode de Piltz.

C'est M. Piltz qui a trouvé la méthode arithmétique (1881).
Comme nous l'avons déjà fait remarquer à propos de la méthode
de Dirichlet, il suffit dans le problème des diviseurs de s'occuper
de la somme

2
h entier

où pour abréger on a posé <[>(?) v — E(c) — ^.
Dirichlet se sert de la borne supérieure triviale x pour

la valeur absolue de cette somme, mais M. Piltz a remarqué
que, si x est grand, les termes négatifs atténuent l'influence des
termes positifs. Il décompose l'intervalle (1, 1/x) en intervalles
partiels, et il montre qu'en choisissant d'une manière appropriée

les points de division, la contribution de chaque intervalle
partiel à la somme en question est d'un ordre plus petit que la
longueur de l'intervalle, d'où l'on déduit que la valeur absolue
de la somme considérée est d'un ordre inférieur k\/x.

L'idée fondamentale de la méthode de Piltz est donc de réunir
beaucoup de termes

Ht) + Hrfr) + • +

de telle façon que la valeur absolue de cette somme reste cependant
relativement petite. Pour cela on doit pouvoir trouver une

borne supérieure de cette valeur absolue, ce qui se fait de la
façon suivante:

1 Prace mat. fiz., 17 (1906), p. 77-114.
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On choisit le nombre positif A ne contenant aucun des facteurs

de B tel que la plus grande valeur g de

Ba

1t + h

Bx
~T Ah

où h est un des nombres 0, 1, B — 1, soit la plus petite pos-
sible. On a alors

x x Ah
B~t -j- h <

B

Si g est petit, r A htqrqest a peu près égal à + -g-, donc
la somme en question est à peu près égale à

plus exactement on a

B—1

2*

h—0

«HT +
Ah
IT

B—1

2*
h— 0 ' ' ' h—0

Calculons maintenant la somme

B—1

x A h

1 + ~B < ig H- 2

2 *(7 +

c'est-à-dire la somme

B—1

2
h=0

h— 0

Ah -f- c

B

A h

~B

où c
Bx

t

(5)

A chaque nombre entier h dans l'intervalle 0 < h < B — 1

correspond un nombre entier k dans le même intervalle et tel
que la différence

Kh -f- E(c) — k

soit divisible par B, et la réciproque est vraie aussi, A ne contenant

aucun des facteurs de B. ^ (t) étant une fonction de période
1, on a
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puisque la partie entière de
k ^ 6 ßest égale à 0. On a donc

B —l B—1
' Ah -}- c \ / /' -j— c — E (c) 1

~B ~ \ ß 1
h=o

v &=o
o i n i—~ + c - E(c) - - 6- - E (c) - -

ce qui est en valeur absolue inférieur à 1. Il s'ensuit donc de (5)

< 4g + 32»(r X

+ A

C'est sur cette inégalité que repose la méthode de Piltz. Pour
une valeur donnée de t on peut choisir A et B tels que le membre
de droite de cette dernière inégalité est beaucoup plus petit que
B, donc aussi beaucoup plus petit que la longueur de l'intervalle.

M. Piltz n'a jamais publié sa méthode. En 1901 il a écrit
deux lettres à M. Landau, pour exposer son procédé et pour
démontrer le théorème de Yoronoï. Les démonstrations données
dans ces lettres, ne sont pas exactes, et ce n'est que depuis
quelques années que M. Landau 1 a réussi à en déduire l'approximation

de Yoronoï. Jusqu'à présent on n'a pu trouver aucun
résultat meilleur avec cette méthode, quoique M. Piltz pré-

i+£tendît qu'il pouvait diminuer l'erreur, et la ramener à O \x'h
quelque soit le nombre positif e.

5. — La méthode de Pfeiffer.

Le sort de la méthode de Piltz ressemble un peu à celui de la
troisième méthode que nous allons exposer, celle de Pfeiffer 2.

L'inventeur a, il est vrai, publié sa méthode (1886) ; mais son travail

manquait tellement de clarté et de précision qu'il est resté
sans influence sur le développement de la théorie analytique des
nombres, jusqu'à ce que M. Landau3 en 1912 eût trouvé

1 Gott. Nachr. (1920), p. 13-32.
2 Jahresbericht der Pfeifferschen Lehr- und Erziehungs-Anstalt zu Jena (1886).
a Wien. Ber. (IIa), 121 (1912), p. 2195-2332 ; 124 (1915), p. 469-505.
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l'erreur dans la démonstration et l'eût remise en ordre. Cette
méthode est basée sur l'étude des séries de Fourier. On considère

et où le domaine D satisfait à des conditions très générales.
L'idee fondamentale de la méthode est que, pour m croissant
indéfiniment, tend vers le nombre des points entiers du
domaine D, à condition que les points entiers, situés sur le contour
de D, soient comptés d'une façon déterminée; par exemple, si le
contour du domaine a une tangente en un point entier, on ne
comptera ce point qu'à demi.

Avec la méthode de Pfeiffer, M. Landau démontre les résultats
de Voronoï et de Sierpinski, donc (3) et (4) '. Dans le

problème du cercle il en déduit non seulement une relation contenant
le symbole 0 de Landau, mais encore une relation contenant

le symbole QdeHardy-Littlewood. Il montre en effet que pour
chaque nombre e- positif

c'est-à-dire que pour x croissant indéfiniment le quotient

l'intégrale

D

où l'on a posé

¥m(u) — 1 -}- 2 cos lfm u 5

1

ne tend pas vers 0.
Si ß ne dépend pas de x, la relation

pp) o(*P)

est valable pour ß i> ~,d'après (4), mais fausse pour <
1 Annah di Mat. (Tortolini), Rome (3) 20 (1913), p. 1-28; Gôtt. Nachr. (1915), p. 148-160.



POINTS A COORDONNÉES ENTIÈRES 15

1
En effet, si la relation était juste pour ß < on pourrait choisir

le nombre positif s de telle façon que ß < j- — e, et alors
4 — £

.1'

tendrait vers 0 pour x croissant indéfiniment. La limite inférieure
de l'exposant ß est donc contenue dans l'intervalle ~ < v < 4-.

i — —S
La détermination exacte de la limite inférieure est un des
problèmes les plus intéressants de la théorie des nombres, mais on
n'y est jusqu'ici pas encore arrivé.

M. Landau 1 applique aussi cette méthode à d'autres
problèmes; entre autres il en déduit les approximations analogues
pour une ellipse. D'autres applications ont été données par
Cauer 2, Hammerstein 3 et moi-même 4.

Comme le fondement de la méthode de Pfeiffer est une identité,

on ne doit pas s'étonner de pouvoir en déduire non seulement

des approximations, mais aussi des identités. Par exemple,
si x est un nombre positif, non entier, on trouve5

P (x) l/.x ^ ~ßr J, (6)
tèi V n

et6

A + (2,1/«) (7)
T^\Vn

où r (n) désigne le nombre des solutions entières de u2 -f e2 ny
et l'on a

2 f* xL(x) — — J cos xu sin — du Yj (2x) — (2x) ;

o
u

(x) est la première fonction de Bessel de premier ordre, Y( (x)
est la deuxième solution habituelle de l'équation différentielle

1 Wien. Ber. (IIa) 124 (1915), p. 469-505.
2 Thèse de doctorat 1914), Gœttingue.
3 Thèse de doctorat (1919), Gœttingue.
4 Nieuw Archief {2) 13 (1920), p. 125-140.
6 Landau. GÖtt. Nachr. (1920), p. 109-134.
6 Rogosinski. Thèse de doctorat (1922), Gœttingue.
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de Bessel avec 1 comme paramètre, et H, (x) est la fonction
cylindrique

2 C te~xt
^(•r) - / 1 dt

VV-i
Si x est entier, on doit remplacer dans (6) et (7) P (x) par

pW-^(4 et A (x) par A (x)-^d(x).
Des relations (6) et (7), qui ont été découvertes par Voronoï 1

et Hardy % on déduit facilement les relations déjà mentionnées
plusieurs fois de Voronoï et de Sierpinski \

Comme je 1 ai déjà fait remarquer, l'ordre de grandeur exact
de P (x) n est pas connu, d'ailleurs l'ordre de A(.r) ne l'est pas
non plus. Par contre l'ordre exact des valeurs moyennes des
fonctions (A (t))'1 et (P (/))"J dans l'intervalle 1 < t <x est
connu. En effet comme M. Cramér'' l'a déduit de (6) et (7)
(il s est servi meme de deux relations plus simples), on a pour
chaque nombre positif e

J'(\(t))-dl Tl.r- + o(.C+S)
1

et

f (V(,) y-dtTs ,•* + o(,-ï+£)
1

où yx et désignent des nombres positifs constants. La valeur
moyenne des carrés des fonctions A {x) et P(x) a donc le même
ordre que la fonction l 'x,de sorte que et LCL ne tendent

V//.r \/x
pas vers zéro pour x croissant indéfiniment. Nous pouvons donc
écrire

A (.*) oiy~r) et P ü(\/l).
1 Ann. de l'Ile. Norm. (3) 21 (1904), p. 207-268 et p. 459-534; Verh. III. intern. Math

Kongresses in Heidelberg (1904), p. 241-245. Cf. Hardy, Lond. M. S. Proc. (2) 15 (1916),
p. 1-25 et SiKRPinski. Pracc mat.-fiz., 18, p. 1-59.

2 Quart. J.} 46 (1915). p. 263-283.
3 Landau. Gott. Nachr. (1915), p. 161-171; Münch. Ber. (1915) p. 317-328- Math Zs 5

<1919), p. 319-320.
4 Math. Zs. 15 (1922), p. 201-l;fc0.
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Si l'on emploie l'inégalité connue de Schwarz

b \ 2 b• O \ * v

f f(t)dt\^ b-
a / «

où l'on suppose 6 > on trouve que la valeur moyenne des

fonctions | A (a?) | et | P (rc) | est au plus du même ordre que Vx.

6. — Laméthode de Landau.

La méthode basée sur l'étude des fonctions de variables

complexes s'appuie sur le lien qui existe entre le nombre des

points entiers de certains domaines et la convergence de

certaines séries de Diricblet. Nous n'avons à considérer ici que les

séries de Dirichlet ordinaires, c'est-à-dire celles du type

ns '
n= 1

les an étant des coefficients constants et 5 une variable complexe.
Si cette série converge en un point s0, elle converge en chaque

point s ayant une partie réelle plus grande. Pour le démontrer,

posons
k

<*>„

donc
a..

Si v et w sont des nombres entiers (w > v 1), on a

.F - F F ^ F„* n ~ b n—1 n n

7 "" -ÄJ ~~ ^ n5-"o -ÂÏ (n + 1
n=zv n=v n=v n=v—1 x

w w—1 ' -2?=2^-^.) +
ti-— a iir=.u v \ i f r

(8)

L'Enseignement mathém., 23e année, 1923, 2



18 J. G. VAN DER CORPUT
On a

1
(s - s0) r —01JM^o+lfV (n -f l)5 5o

n

donc

?r.S—I (n + l)-s'—-s'o

1

^ Is-*ol • f ,(9)n

p désignant la valeur réelle de s —s0. En vertu de la convergence
de la série en question en s0, le nombre F„ est borné, donc en
valeur absolue plus petit qu'un nombre constant A; on a donc
d'après (8) et (9)

Comme p est positif (parce que la partie réelle de s est plus
grande que celle de s0). l'expression finale tend vers 0 pour v
croissant indéfiniment, de sorte que la série de Dirichlet en
question converge au point s.

Il s'ensuit que pour une série de Dirichlet, on a trois cas
possibles: convergence en chaque point, comme par exemple
pour la série

divergence en chaque point, comme par exemple pour la série

ou bien il y a une droite parallèle à l'axe imaginaire telle que la
série diverge à sa gauche et converge à sa droite. L'abscisse de
cette droite s'appelle l'abscisse de convergence de la série, et
il y a une relation simple entre cette abscisse « et l'ordre de
grandeur de la fonction

< A j s — s i. ^ + A
léi { «,+1 ** c (10)

1

SD) «
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En effet, si a > 0, on a pour chaque nombre s positif

S(x) 0(xa+s)

et inversément, si

S(tf) o{x$) (11)

l'abscisse a de convergence est < ß. Pour démontrer la première
de ces propriétés, nous appliquerons l'inégalité (10) en y posant
s — 0, v 1, w E(x), de sorte que le membre de gauche de

cette inégalité est égale à la valeur absolue de S(x). Nous devons

poser s0 a + e, parce que la série converge en ce point ;

alors p — (a + s), donc

X

| S (.*.•) | < A. (a + i)f ua+s~ldu+ Aaa+S + A
1

Pour démontrer la seconde propriété, il suffît de montrer que
la série de Dirichiet converge pour chaque nombre réel s > ß,
c'est-à-dire il suffit de montrer que pour chaque nombre
s ß + s (s > 0) le membre de gauche de la relation (8) tend
vers 0, si ç croît indéfiniment. Posons s0 0, donc p s — s0

ß + s. Le nombre F„ est égal à S (n) et d'après (11) il existe

un nombre constant A tel que la valeur absolue de Fn est
inférieure à Ar$ et à A(ra+ l)ß, donc inférieure à u?, u désignant
un nombre quelconque dans l'intervalle n<L u<^n-\- 1.

Il s'ensuit
tt-j-l «+ 1 7i+'l

I p I r du ^ C ß du r du
1 -'•/ J+ÎH =A7 ?T-

n il n

D'après (8) et (9) on a

» « x f* du A A
<A.|p + e|.y +ue+ l a,* ^ oS

et l'expression finale tend en effet pour chaque nombre positif
£ vers 0, si e croît indéfiniment.

De ces considérations on déduit un lien entre nos problèmes
et la convergence de certaines séries de Dirichiet. Comme
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exemple nous prendrons le problème du cercle. Le nombre des
points entiers du cercle v?+ p2 est égal à la somme

2 r(»)
0 <^n<^X

t {n) désignant le nombre des solutions entières de l'équation
u2 -f- ç2 — n. D'après le résultat de M. Sierpinski la fonction
itx représente cette somme avec une erreur dont l'ordre ne

3

surpasse pas celui de [/x, donc

2 M"' ~ °(x3).
1 < n <Ç x
n entier

de sorte que la série de Dirichlet

r (n)— 71

a une abscisse de convergence ^^.Si nous pouvons démontrer
directement ce théorème, nous aurons montré que pour chaque
nombre s positif nous avons la relation

2 (r(n) — t) o(a;ï+e)
1 <^n <Ç x
n entier

donc

p { j : r(n) — tcx —
1 x
n entier

M. Landau1 a publié en 1912 une méthode au moyen de
laquelle on peut trouver une démonstration directe dans ce cas
et dans bien d'autres. Cette méthode est applicable pour des
domaines à k dimensions pour lesquels la série correspondante
de Dirichlet satisfait entre autres à une équation fonctionnelle
analogue à celle de la fonction Ç (s) de Riemann. Il applique cette

1 Gott. Nachr. (1912), p. 687-771 ; (1915), p. 209-243 ; (1917), p. 90-101
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méthode entre autres 1 aux problèmes concernant l'ellipsoïde

à k dimensions 2.

La méthode de Landau se sert, il est vrai, de propositions

exigeant des connaissances mathématiques assez profondes,

mais elle conduit parfois très rapidement au but. Par exemple

M. Landau 3 n'a besoin que de 2 pages pour démontrer la

proposition de Sierpinski

p(x)o

tandis que M. Sierpinski4 a besoin d'environ 40 pages pour la

démonstration du même théorème par la méthode de Yoronoi.

Un des grands avantages de l'emploi des variables complexes

est qu'il conduit non seulement à des résultats contenant le

symbole O, mais encore à des résultats contenant

MM. Landau 6, Hardy6, Wigert7 et Cramér8 ont appliqué

la théorie des nombres complexes au problème des diviseurs

et à celui du cercle. M. Hardy a montré:

P(ai) û(\/ xlogy) et A(.r) û(\/* log x log log x) ;

si ak désigne la limite inférieure de l'exposant ßk pour lequel

la relation
\k(x) o(A)

est encore juste, on a

l 1 l „ „ i — 1 k — 2

"4 a2 3" ' 3" —
1X3"2 ' 2k afe k

En admettant l'hypothèse de Riemann que toutes les racines

1 Gott. Nachr. (1917), p. 102-111 ; Einführung in die elementare und analytische Theorie

der algebraischen Zahlen und der Ideale (1918), p. 131 ; Math. Zs., 2 (1918), p. 52-154.
2 Berl. Ber. (1915), p. 458-476; Wien. Ber. (IIa), 124 (1915), p. 445-468.
s Math. Zs., 5 (1919), p. 319-320.
4 Prace mat. fiz., 17 (1906), p. 77-114.
5 Batt. G., 51 (1913), p. 73-81 ; Münch. Ber. (1915), p. 317-328 ; Gott. Nachr. (1915), p. 161-

171 ; Math. Zs., 5 (1919), p. 319-320.
G Quart. J., 46 (1915), p. 263-283 ; Lond. M. S. Proc. (2), 15 (1916), p. 1-25 et p. 192-213 >

18 (1919), p. 201-204.
7 Acta Math., 37 (1914), p. 113-140. Cf. Landau, Gott, gelehrte Anzeigen, 177 (195),

p. 377-414.
8 Ark. for Mat., Astron. och Fys., 21 (1922).
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complexes de la fonction Ç(s) se trouvent sur la droite d'abscisse

2", M. Landau1 a déduit d'une proposition due à M. Littlewood2

qu aucun des nombres «ä, a3, etc. ne surpasse j,
7. La méthode de Van der et de 4.

Finalement nous traiterons une méthode que M. Vinogradoff
et moi avons trouvée indépendamment l'un de l'autre. Plus
d'un mois après avoir tenu cette conférence, j'ai pour la
première fois appris le nom de M. Vinogradoff et les remarquesfaites dans cet article au sujet des résultats trouvés par lui
ont été ajoutées au texte lors de la correction de la première
épreuve.

Avant de passer à la méthode, je veux indiquer comment
j'y suis arrivé peu à peu par l'étude des méthodes de Voronoï
de Pfeiffer et de Piltz.

Comme nous l'avons déjà dit à propos des méthodes de Diri-
chlet et de Piltz, nous n'avons dans le problème des diviseurs à
nous occuper que de la somme

2
i V*

h entier

*(j

De même dans le problème du cercle nous n'avons à considérer
que la somme

2 V* — h2)

1 \x
h entier

1 G'ôtt. Nachr. (1912), p. 728.
2 C. R., 154 (1912), p. 263-266.
3 These de doctorat (1919), Leiden; Math. Ann., 81 (1920), p. 1-20; Math. Zs 10 Cl92n

L nmZLT\A"f:Ai(,921)>P- 53"79; 87 (1922)' P' 39-85' U" amcie paraîtra
cobpTT, cöu ZTm Pe\ZTreencore dans Ia Math- Cf- LANDAu-Van der

(xNN%t\l^rt\C^arkOV'Xr)' Bd"deS Sciences Ru"ie' Petrograd
étéLrito d0Ct0rat(,92°)' Pétr°Srad- d» M. Vinogradoff ont
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Pour calculer le nombre des points entiers d'un domaine

quelconque, il suffit de calculer la somme

2
a^n^b
n entier

ç f(u) ou u f(v) étant l'équation d'une partie du contour.

Jusqu'à ces dernières années la méthode de Pfeiffer était appliquée

à peu de problèmes seulement, et la méthode de Voronoï
à deux seuls problèmes, celui des diviseurs et celui du cercle,

de sorte que dans l'emploi de cette dernière méthode on posait

toujours ou f(u) =V/£—^2- J'ai montré que ces

deux méthodes pouvaient être appliquées à chaque fonction

f(u) remplissant la condition suivante :

f(u) est réelle et deux fois dérivable dans l'intervalle

a<u<ib, (a + 1 <; à), la deuxième dérivée étant uni-
oscillante (c'est-à-dire monotone), toujours positive ou

toujours négative.

Les deux méthodes donnent dans ce cas le même résultat,
à savoir qu'il y a une constante absolue c telle que l'on ait

f i f>) rdu +
1

+
1 ^ (i2)

K{ vir»i virwiy

G

2 41/») <c(
\

n entier

Il est évident que l'on peut maintenant calculer approximativement

le nombre des points entiers dans des domaines
satisfaisant à des relations très générales. Nous prendrons comme
exemple le problème des diviseurs, c'est-à-dire nous approxime-
rons la somme

'S *i
1 h 5^/x

h entier

Nous décomposons cette somme en deux sommes partielles

2,_*(j) " 2 Hr
1 ^ h<yx x

h entier /Ten lier
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I

Puisque |ip| < —, la valeur absolue de la première somme par-
i 3/- 3 _tielle est < -~v x. Pour un x suffisamment grand \/x + 1 <\/xy

3

de sorte que la relation G est remplie pour a Vx, b V~x

~ i7* va^eur absolue de la deuxième somme partielle
est donc plus petite que

de sorte que l'erreur dans le problème de diviseurs ne surpasse
3
_

pas, en effet, l'ordre de la fonction V//x log x.
La méthode de Piltz ne donne pas seulement la proposition

énoncée, mais encore un résultat plus général. De la méthode de
Piltz il suit que l'inégalité (12) est valable non seulement pour
la fonction {p(v) ç— E(e) —-i, mais encore pour chaque

fonction y (e) remplissant la condition suivante:

est réelle et périodique de période 1, unioscillante
dans l'intervalle 0 < ç < 1, et satisfait à

i

i y (i1. 1 (O^K^l), Ji/(v)dv 0.
0

Si l'on part de cette supposition, il est très facile de saisir le
principe de la nouvelle méthode. De la supposition B il découle

que {jj (c) est développable dans la série de Fourier suivante

2 a'"e2"""v • où 00 ° -

m=—co 1

donc

2 WW) =22a<Ln<Zb a<^n<ib m——00

n entier n entier
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donc
00

2 +(/(«>) 71VII
çlmrJRn) (13)

« <V m=—co -c>VUVII«

a entier n entier

étant admis la convergence de la dernière double sommation.

Si f(u) satisfait à la condition C', mf(u) y satisfait également.

Si donc de la condition C une borne supérieure peut être déduite

pour la valeur absolue de la sommation

2 e2lzin'l) (14)

«<.« V b

n entier

on trouve également une borne supérieure pour tous les termes

de la sommation dans le membre de droite de (13), de sorte que

l'on obtient ainsi une borne supérieure pour le membre de gauche

de cette inégalité.
Le problème essentiel réside donc dans la possibilité d'approxi-

mer aussi près que possible la somme (14), et c'est grâce à une

équation fonctionnelle approximative remarquable que la chose

est possible. Puisque f"(u) dans l'intervalle a<u<,b est

supposé constamment positif ou constamment négatif,
est une fonction unioscillante de u. Si A désigne le plus petit et

B le plus grand des nombres /'(a) et f(b), à chaque v dans

l'intervalle A g c <. B correspond un nombre n„ univoquement
déterminé par les relations f(n,,)— c, et a<nv<^b. .L'équation
fonctionnelle approximative établit que la somme cherchée (14)

est donnée avec une très grande approximation par l'expression

e±T X! (15,A^nl/lrwi
v entier

où l'on doit prendre le signe + ou le signe —, selon que f(u)
dans l'intervalle a<u^b est constamment positif ou
constamment négatif.

Pour approximer la somme (14), il suffit donc de calculer cette
dernière expression.
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Si nous employons pour la valeur absolue de cette
dernière somme la borne supérieure triviale

2 x
1

(16)

v entier

nous obtenons à peu près la même approximation pour la somme
(14), et si nous substituons ce résultat, nous trouvons
précisément l'inégalité (12), de sorte que cette méthode fournit le
même résultat que la méthode de Piltz. Mais elle peut fournir
encore un meilleur résultat.Nous avons employé pour la sommation

(15) l'approximation triviale (16). Il se pose maintenant
la question suivante: est-il possible de remplacer cette
approximation triviale par une meilleure? A cette question il a été
répondu affirmativement, tant par M. Vinogradofî que par
moi. Je suppose que M. Vinogradofî a développé une propre
méthode, tandis que moi j'ai appliqué la méthode de Weyl S
entre autres dans le cas où / (u) satisfait non seulement à la
condition C', mais encore à la condition suivante :

f(u) est dans l'intervalle a<,u<b k + l fois dérivable
(k 2) ; on a

1 /'"(«) | ^ I /""(«) (17)

1 (n> 0), et dans l'intervalle <( < chaque produit

I („) f(\+ï) („) fihk-l+V („) (18)

I où les A,, AS) Aat_i désignent des nombres non-
négatifs dont la somme égale k—1, est en valeur
absolue au plus égal à' \f"(u)f k~^+v

Les conditions C et D étant remplies, on peut trouver pour la
somme (15), donc aussi pour la somme (14) une meilleure approximation.

Dans ce cas on peut remplacer la proposition énoncée

1 Weyl. Gott. Nachr. (1914), p. 234-244; Math. Ann., 77 (1916). p. 313-352 et Math. Zs.,
10 (1921), p. 88-101.
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par la proposition suivante: Les conditions B, C et D étant
vérifiées, il existe un nombre y dépendant au plus de k et un
nombre positif « dépendant au plus de k et de y avec la
propriété2/ rï+"i i \HA»)) < 7 / I /"(") I du + + ;

a^b \{V I VI I /
« entier 19)

L'exposant est donc remplacé par un nombre plus grand.

Avec cette inégalité on peut améliorer tous les résultats en

question obtenus jusqu'ici contenant le symbole 0 de Landau.
1

On trouve par exemple qu'il existe une constante 0 < telle

que dans le problème des diviseurs l'ordre de l'erreur ne

surpasse pas celui de x®; j'ai montré qu'on peut prendre même
33

® ^ löö' ^onc ^ans Pr°klème des diviseurs l'exposant du

terme représentant l'ordre de l'erreur est compris entre ~ et ^ ;

1 33
donc ^ <; a2 < T^.

Comme exemple je prouverai que dans le problème du cercle

l'exposant analogue est inférieur à Comme nous l'avons déjà

fait remarquer, il suffit de démontrer

41 (V X A2) — O (#®)

1 ^ x
n entier

l0 désignant une constante < Nous appliquerons notre

proposition, en posant asa 1, bVx — Nous

devons supposer x > 8, donc a+ 1 ^ ; de cette manière la
condition C est remplie. En choisissant x assez grand, la condi-

tion D est remplie pour k4, vj —. En effet, dans l'intervalle

l'ordre de f"(u), f"(u), flY(u), fv(u) est
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égal respectivement à celui de—-, —-— ~ Dans (il)l/x * V, ' -x'2, V '
1 ordre du premier membre est donc — et celui du second membre

1 1

de sorte que, x étant choisi suffisamment grand, le premier
membre est plus petit que le second. L'ordre du produit (18)
est

1

_ i

2 <Äi-fl)+j(As+1)+5 <As+l> ^

à cause de + A2 + h3 3, de sorte que, x étant choisi
suffisamment grand, la valeur absolue de ce produit est plus petite

-.4-1 + 1
que f(u) |; 6 dont l'ordre est égal à

l 1

1 35 35 '

Les conditions sont ainsi remplies; l'inégalité (19) a donc lieu,
et il s'ensuit

Dans le problème du cercle l'ordre de l'erreur ne surpasse pas celui
de x@

1 0 désignant le plus grand des deux nombres — y
et i ^donc 0

Nous sommes arrivés au terme de notre exposé. Le choix
entre les différentes méthodes dont nous venons de parler dépend
dans chaque cas particulier du problème posé et du degré
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d'exactitude demandé. Si une première approximation est

suffisante, on peut se contenter de la méthode de Gauss ou de

celle de Dirichlet. Pour les approximations contenant £2 et
aussi dans les problèmes concernant des domaines à k dimensions,
l'emploi des variables complexes est préférable; jusqu'ici en
effet dans les questions de cette nature la méthode de Pfeiffer
n'est appliquée qu'à des cas particuliers, et les autres pas du
tout. La méthode de Van der Corput et de Vinogradofî n'est
encore qu'à son stade initial et elle sera en tout cas encore
applicable à beaucoup d'autres problèmes. Je suis persuadé
qu'elle est encore susceptible d'amélioration. J'ai en effet
l'impression que la méthode de Weyl, appliquée à la somme (15),
ne donne pas la dernière approximation possible, qu'au
contraire, la valeur absolue de (15) est beaucoup plus petite que
la borne trouvée avec la méthode de Weyl. Et chaque amélioration

de l'approximation de cette somme donne une amélioration

du résultat final.
D'après une communication qu'il a faite par écrit, M.

Vinogradofî a démontré que dans le problème des diviseurs la
limite inférieure de l'exposant dans le terme de l'erreur est

16 ^ n'esl pas impossible que sous peu il sera démontré

que cette limite inférieure est égale à-.

«


	MÉTHODES D'APPROXIMATION DANS LE CALCUL DU NOMBRE DES POINTS A COORDONNÉES ENTIÈRES
	1. — La méthode de Gauss.
	2. — La méthode de Dirichlet.
	3. — La méthode de Voronoï.
	4. — La méthode de Piltz.
	5. — La méthode de Pfeiffer.
	6. — La méthode de Landau.
	7. — La méthode de Van der Corput et de Vinogradoff.


