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30 Soit y = L (1 4 x).
La formule donne:
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Siony fait x = %, N entier positif quelconque, on a:

pour toute valeur positive de z.
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qui donne sous forme de série rapidement convergente la diffé-
rence tabulaire d’une table de logarithmes népériens c’est-a-
dire le moyen de calculer cette table.

Royan, février 1921.
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Le Probléme des quatre couleurs.

A propos d'une communication de M. J. Chuard.

Dans le n° 6 du tome XXII de PEnseignement mathématique,
paru en mai 1923, je lis, aux pages 373 et 374, une note de M. Jules
Chuard, sur le probléme des quatre couleurs. Sans vouloir diminuer
son mérite, je lui ai signalé, et je crois que cela peut étre intéressant
pour les lecteurs de I’ Enseignement math., que la proposition a laquelle

il arrive n’est certainement pas exacte, dans les termes ou il I'a
énoncee.
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On sait depuis trés longtemps, que le probléme des quatre cou-
leurs revient a celui de décomposer le réseau cubique (c’est-a-dire
a sommets triédres), en un réseau linéaire (¢’est-a-dire formé d’ardtes
isolées et reliant deux & deux tous les sommets), et un réseau qua-
dratique (c’est-a-dire formé de polygones isolés passant par tous les
sommets), et de facon que tous ces polygones aient un nombre pair
de cOtés; ce serait le cas, par exemple, il n’y avait qu’un seul poly-
gone.

Le point difficile qu’affirme M. Chuard, ¢’est qu’il existe une décom-
position dans laquelle il n’y a qu’un seul polygone; et J'ajoute qu’on
a souvent cherché dans cette voie la démonstration du probléme,
mais jusqu’ici sans succés, & ma connaissance.

Cependant, il n’est pas exact, comme le dit M. Chuard, que dans tout
réseau cubique tracé sur une spheére, il existe un polygone passant par
tous les sommets. Il est aisé de construire des exemples qui infirment
cet énoncé. Et je vous en donne deux ci-dessous.

Fig. 1. Fig. 2.

Peut-étre existe-t-il une propriété de ce genre-ci, et encore, fau-
drait-il la démontrer: dans tout réseau connexe, tracable sur une
sphére, cubique, et satisfaisant a- d’autres conditions qu’il faudrait
préciser, il existe un polygone -passant par tous les sommets. Et si
ces conditions sont telles que les réseaux qui ne les satisfont pas sont

coloriables en quatre couleurs pour d’autres motifs, alors le théoréme
des quatre couleurs serait démontré.

UccLe (Belgique), 16 juillet 1923. A. ERRERA.

Sur les fonetions multipériodiques d’une variable réelle.

A propos d’une Note de M. Winants.

On trouve dans la Note de M. Winants sur les fonctions triplement
périodiques (Enseignement mathématique, XXII, No 6, p. 358) la
remarque suivante: «on a démontré I'impossibilité d’une fonction
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