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CuariTrE IV.

Les similitudes vectorielles* du plan et leur produit fonctionnel.
Isomorphisme de ce produit et du produit cyclique des vecteurs.

On désigne sous le nom de similitudes vectorielles les homo-
graphies du plan qui, appliquées & un vecteur, le font tourner
d’un angle défini et altérent en outre sa longueur dans un rap-
port déterminé. Comme il est bien connu, ces similitudes ont
fourni la premlere representamon géométrique des nombres

complexes. Nous noterons ici par )~ 1 opérateur qui, appliqué a

a, le transforme en b par une operatlon de la nature indiquée,
done :

I(la = )I—)(a — P , (1)

a
Si on définit en particulier 'opération identique U (qu'on se

contente en général d’écrire 1), et le verseur droit 7, toute autre
similitude J€ peut s’écrire sous la forme :

IJC = U + wd (2)
¢’est-a-dire que :
ICa = 2 Uia + pI(a
quel que soit a.

Nous rappelons encore que le produit fonctionnel ou séquence
de deux opérateurs JC et JC est défini par :

IC1IC (3)

de sorte que nous utiliserons pour lut le méme symbole (¢’est-a-
dire la demi-parenthése gue nous employons augst pour séparer
Iopérateur de 'objet).

Les similitudes du plan formant un systéme linéaire & deux

1 Cf. C. BuraLi-Forti et . MarcoLonao, Anatyse vectorielle giéndrale, I. Transformations
linéaires, p. 47.
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unités: U, 7, on sait qu’elles satisfont & I’équation fondamen-
tale de Hamilton-Cayley :

I — 2400 +8 =0 (4)
ou :
I — 2a0CAU + U = 0
Les coefficients « et 8 de cette équation étant donnés par®:
2afab] = 2[ICU][ab] = [Ja . b] + [a . ID]
S
Blab] = IC"[ab] = [JCa . HCH] . i

Le produit fonctionnel des opérateurs étant associatif, on peut
déduire toutes ses propriétés de I’équation de Hamilton-Cayley
relative & g, & savoir :

5% UC = o (6)
a laquelle il convient de joindre :

JU =UI =9 . (6)

Soit u un vecteur unitaire, ¢ un vecteur unitaire perpendicu-
laire. Avec la notation indiquée, on a :

done :

' wl v v/ u
( >—<)~ = )_<)_“
U u u u
équations qu’on peut rapprocher de celles qui sont & la base du
produit cyclique des vecteurs:

; uf/—}—vi__—_ﬂ 8)

U v —v _u

et qfi montrent I'isomorphisme des deux produits soumis aux
mémes lois formelles. Mais cet isomorphisme est ici trés intime,

1 Cf. R. MEHMKE. Vorlesungen itber Punkt und Vektorenrechnung, 1, 1, p. 320.
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en ce sens que les produits précédents peuvent en somme «se
substituer U'un & Uautre en toule proportion ».

Nous commencerons cependant par montrer que l'orientante
d’une forme est bien définie indépendamment de toute direc-
tion de repére, malgré qu’il y figure les vecteurs isotropes j, et
7, définis & partir de u et ¢.

Soit en effet:

uw = cosou + singy
v/ == — sinou - cos gy .
Posons:
j; = u + v /; = u —
On voit que:
]; = ¥} ]; = ¢'¥; .

On savait bien que l'ombilicale était indépendante de toute
rotation des axes, c¢’est-a-dire:

., .’

.]1.]2 = jl i‘Z ‘

On voit en outre qu’on a aussi:

1
e (/(n) )( j:)/f _ (f(”) Y jil) ;l
(/1] ( ” .
= ———((F" )3 — (i
[/,7,] ( )

¢’est-a-dire que les produits cycliques sont bien définis de facon
absolue.
Soit maintenant une forme:

) = abe ... 1

évidemment indifférente a I'effet de ’opération identique U sur
un de ses facteurs; il en sera de méme de son orientante.

Agissons ensuite avec le verseur droit & sur un des facteurs de
f), a par exemple, et voyons I’effet produit sur I’orientante. Il
est évidemment permis de supposer a unitaire, et par suite de
supposer a identique au vecteur u a partir duquel nous avons
construit la forme orientante. .
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Alors:
[ajy] = — t[aTa] [a),] = t[aTd]

et apres la rotation:
[Ja . j,] = [Ja . a] [Ja . ] = [Ja . a]
[Ja . jo] = — [ajy] [Ja . ] = ]

Par suite, si:

a_bo_c.._1_- cplj;‘ ——cp2]';L (9)
Ja_bo_c..o | =— L[cpljf—}«cp?/':; . (10)

Quel que soit le facteur de j) sur lequel on aurait opéré, on
serait arrivé au méme résultat, ce qui montre que opération
J est permutable avec les facteurs du produit cyclique; comme
celo a lieu aussi pour la multiplication par un nombre ot Popé-
ratior U, cela est général pour toute similitude J¢, et on pourrs
écrire:

Hiabo ...ol=ab_c.._l=..—=ac_b.._Je (11)

En particulier si:

n
a_b.,.B_l—x—

on aura.:

n

l ~ 1 1 !
JCixl = ((7(3(” T) — JC(” a . [fe(” ' S 56(” [
c’est-a-dire que Deffet de Popération JC sur une orientante peut

étre réparti uniformément sur tous les facteurs de celle-ci, et
1

ceci quelle que soit la détermination prise pour JC(" ; eutrement
dit, faire subir la rotation ¢ & un facteur d’un produit f revient

N % : " 0
a faire tourner Poricntante de cette forme de I’angle =,

Demeéme, si des similitudes JC, IC, ... ete. ont opéré sur divers
émélents de (), le résultat réalisé sur Porientante pourra sim-

nlement §’écrire:
. ICK(olab ... L.

Soit maintenant une équation cyclique:

a_beoe ...l —=a_b.._1LU.
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Dans ce systéme, la division par a' est possible * au second
membre, donc au premier, et donne:

)avl) ./..vl O &
a

qu’on peut encore écrire:

a
=

a

(becocl=10bce ol

Et comme on peut du reste faire apparaitre au second membre
un facteur quelconque u, en écrivant par exemple:

o1 pourra en général diviser les deux membres d’une équation
cyclique par tel facteur qu’on voudra, en susbtituant ainsi &
chaque fois une similitude & un vecteur; de méme qu’on pourra
s’arréter apreés un certain nombre de ces opérations, ayant ainsi
ramené l’équation:
acb....ol=a 0.._ 10U
a une forme:
pPeqger=poqgr

par exemple.

On pourra également faire les opérations inverses en multi-
pliant par des vecteurs. Il n’y a donc qu’une différence d’inter-
prétation entre les équations entre orientantes et celles entre
similitudes; on voit en outre que de nombreuses opérations
intermédiaires sont possibles, qui donnent facilement autant
d’énoncés géométriques.

Remarquons encore que l'orientante d’un vecteur est ce
vecteur lui-méme et qu’on peut pousser les divisions par des
vecteurs dans le systeme du produit cyclique au dela des simili-
tudes et envisager des opérateurs tels que:

! Pai déja employé cette méthode dans un cas particulier. Enseignement mathématique,
XX11, 3.

[’Enseignement mathém,, 23 année; 1923, 4
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qui, agissant sur un produit de n -~ 1 facteurs, redonnent un

vecteur, soit:
! 1

)a / l(a'v U e e e 0 = 1,
s B iia ws

Nous verrons un peu plus tard comment on peut transformer
ces opérateurs.

ReMARQUE. Nous avons, chemin faisant, remarqué que l'opé-
ration J, appliquée & une orientante:

723 (374
la transformait en:
— e+ 9,0 .

Ceci donne un sens plus précis aux opérations @, précédem-

ment emplovées:
Py €L = (12)

n

et montre que 'opération &, est indépendante de son indice n.
En outre, la formule fondamentale (9) ch. III, devient:

)

t ¢, (p), ,(9) (9) ,, (p) (p) (9)
_—‘z—(gVth +thgV> = g% L b . (13)

CHAPITRE V

Nouveaux développements sur les similitudes. Anti-similitudes
et affinités.

On sait qu’a une similitude:
I = U + pJ

on peut adjoindre la similitude conjuguée :

KIC = I = U — ud

qui a méme équation fondamentale que J¢, comme cela résulte
de 1’égalité des invariants:

[UIC) = [UIC] = &
= JC = 3 4 p? (norme de JC)
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