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SUR LA THÉORIE DES ÉQUATIONS
ET DES FONCTIONS ALGÉBRIQUES

D'APRÈS L'ÉCOLE GÉOMÉTRIQUE ITALIENNE1

PAR

Federigo Enriques (Rome).

1. — Lorsqu'on parle de géométrie, il n'est pas rare de

rencontrer une certaine méfiance parmi des mathématiciens qui
n'ont pas oublié la rivalité qui existait autrefois entre l'école
des analystes et celle des géomètres, lorsque la pureté de la
méthode, analytique ou synthétique, semblait constituer l'idéal
de la science.

On aime à croire quelquefois que cette rivalité est terminée

par la simple mort de l'une des deux écoles rivales, et précisément

de l'école géométrique, puisque les fins que celle-ci
poursuivait — soit la description de figures remarquables, leurs

générations ou transformations, etc. — ont perdu en grande
partie de leur intérêt pour les mathématiques contemporaines.
Aussi celui qui vient vous entretenir aujourd'hui de questions
géométriques, risque d'être écouté un peu comme un survivant,
qui vous parlerait de problèmes déjà dépassés par la pensée

scientifique.
ïl est vrai, Messieurs, je suis bien loin de le nier, que certaines

manières d'envisager les problèmes de la géométrie — tant au
point de vue de la méthode qu'au point de vue des buts que se

proposaient les chercheurs — ont actuellement perdu dans une
large mesure leur attrait. D'autre part, dans le domaine
algébrique qui formera l'objet de ma conférence, l'emploi constant
de l'imaginaire, ainsi que l'introduction d'un nombre de dimensions

supérieur à trois, ôtent à la science de l'espace son sens
visuel ordinaire, de façon qu'elle reste seulement un langage

1 Conférence faite à la réunion du printemps de la Société mathématique suisse,
tenue à Lugano, le 22 avril 1924.
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Imaginatif, propre à exprimer des faits qui appartiennent à
1 analyse. Enfin, si vous le voulez, je puis bien admettre que
la voie du progrès dans nos idées géométriques est semée de
quelques cadavres. Mais, ici, comme toujours, la mort a joué
le rôle qui lui revient par sa nature, dans l'évolution de la
vie; je veux dire qu'elle n'est que l'aspect négatif d'une
transformation profonde qui a réussi à renouveler l'esprit de la
science. Et cette évolution est bien ce qui constitue la
véritable justification historique de l'opposition entre analystes et
géomètres que je rappelais tout à l'heure. A ce point de vue
l'effort même des puristes a joué un rôle important, en amenant

une adaptation mutuelle de deux ordres de concepts, qui
se rattachent à des formes différentes de l'intuition mathématique.

C'est ainsi que Darboux a pu dire qu'au dernier siècle le
développement autonome de la géométrie — qui, après
l'introduction des coordonnées et l'invention du calcul infinitésimal,
était devenue un champ ouvert à l'application de l'analyse —
a contribué dans une large mesure au renouvellement de la science
mathématique toute entière, en offrant aux recherches une voie
nouvelle et féconde.

2. C'est au domaine des équations et des fonctions
algébriques que s'est attachée particulièrement l'école des géomètres
italiens et il est juste de reconnaître ici que leur conception
géométrique de ces problèmes a élargi et transformé la position
classique des problèmes de l'algèbre.

Cette influence de la conception géométrique se montre déjà
dans la considération du cas du système déterminé, qu'on ramène
traditionnellement au cas type d'une équation unique, renfermant

une seule inconnue. En effet, d'une manière générale,
le traitement de problèmes où il s'agit de déterminer
algébriquement un nombre fini d'objets, nous met en présence d'un
certain nombre n d'équations compatibles entre m ^ n inconnues,
et le plus souvent il est pratiquement impossible d'effectuer les

opérations d'élimination qui devraient réduire le système à une
équation unique.

Pour le géomètre, il n'y a aucune difficulté à raisonner, par
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exemple, sur un nombre fini de points qui constituent un groupe G,

donné par les intersections de courbes planes ou de surfaces

dans l'espace, ou même de variétés à plusieurs dimensions,

et cela sans qu'il ait à former l'équation résultante dont on

peut faire dépendre la détermination de G. Et il n'a pas besoin

de développements de calcul pour comprendre que tout ce

que l'on dit des fonctions symétriques ou des groupes de

substitutions sur les racines de cette résultante, s'étend de suite aux

fonctions symétriques ou aux groupes de substitutions définis

par rapport aux points de G.

Mais la considération générale du système d'équations déterminé

donne lieu à des problèmes que celui qui se rapporterait
constamment à une équation unique ne pourrait même pas

soupçonner, en premier lieu déjà au problème du calcul du

nombre des solutions, qui est le degré de la résultante. Les

exemples les plus simples tirés de la géométrie montrent la

difficulté de cette recherche. Que l'on se propose, par exemple,

d'évaluer le nombre des droites appartenant à une surface

cubique générale, /3; ce nombre est, comme on le sait, égal

à 27, mais en écrivant les conditions pour qu'une droite appartienne

à /3, on obtient d'abord une équation d'ordre 81, dont il
faut écarter une partie des solutions: la géométrie nous montre
aisément les raisons de la mise à l'écart de ces solutions.

En d'autres cas, la considération d'un système d'équations
rencontre des difficultés que l'on ne sait pas vaincre d'une
manière directe, mais devant lesquelles l'intuition géométrique
nous aide d'une façon indirecte en transformant le problème

par une vision de continuité. Pour citer un exemple très simple,

supposons qu'il s'agisse de trouver les équations réductibles qui
appartiennent à un système linéaire d'équations quadratiques

\/;kr-> + \ U(xÏz) 1- \ fzWz) + \U^yz) 0 •

Il suffit de remarquer que, par une variation continue des

coefficients, ce système se réduit à celui des surfaces de second

ordre passant par six points 1, 2, 3, 4, 5, 6. On voit alors qu'il
y a dix couples de plans analogues au couple 1, 2, 3; 4, 5, 6 et
renfermant les six points, et on conclut que le problème général
proposé admet également dix solutions.
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C'est là le principe bien connu de la conservation du nombre,

qui se dégage du principe de continuité de Poncelet, et qui est
devenu par 1 œuvre de mathématiciens tels que De Jonquières,
Cremona, Cayley, Zeuthen et Schurert, la base d'une
méthode systématique de recherche. Je n'insisterai pas sur les
développements que cette méthode a reçus dans l'école
italienne, en particulier par les travaux de Segre, Castelnuovo,
Pieri, Severi, etc. je me bornerai seulement à rappeler que,
parmi les résultats obtenus, il y a aussi la détermination rigoureuse

des conditions de validité du principe en question, dont
quelques-unes seulement avaient été reconnues par Zeuthen
et Schurert.

3. Le cas du système déterminé auquel se rapportent les
considérations qui précèdent, n'est qu'un cas particulier dans
la théorie générale des systèmes d'équations renfermant
plusieurs inconnues. Or c'est dans cette théorie générale que la
conception géométrique déploie encore davantage ses effets,
tant au point de vue de la position des problèmes qu'au point
de vue de leur résolution.

A un système d'équations quelconque correspond une variété
algébrique, qui en général sera composée de plusieurs parties
irréductibles. Chacune de celles-ci pourra être ramenée par une
transformation, qui équivaut à une projection, à une variété
d'un certain nombre n de dimensions appartenant à un espace
de ft + 1 dimensions, et qui sera représentée par une équation
unique entre n + 1 variables.

Les systèmes d'équations ou les équations entre plusieurs
variables, amènent à des problèmes généraux de deux ordres:

1° les problèmes qui touchent à la résolution d'une équation
donnée, où il s'agit d'exprimer une partie des inconnues au
moyen des autres ou même toutes les inconnues au moyen de
paramètres arbitraires;

2° les questions d'existence où il s'agit de discuter, de
différentes façons, les conditions d'existence de fonctions algé-

1 Comparez par ex.: Enriques-Chisini: « Lezioni sulla teoria geometrica delle
equazioni e délia funzioni algebriche », 1° 3 Cap. 4. Vol. II. Rologna, Zanichelli, 1918.
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briques que l'on assujettit à des conditions particulières, par

exemple, à avoir des singularités données, etc.

Je parlerai d'abord de quelques problèmes de résolution,

en commençant par le cas le plus simple où il y a une seule

variable indépendante. C'est le cas d'une courbe, qu'il est

indifférent de supposer plane ou gauche et appartenant à un

espace d'un nombre quelconque n de dimensions. L'équation

ou le système d'équations correspondant seront résolus de la

façon la plus simple, si l'on réussit à exprimer les inconnues

(liées par n—1 équations indépendantes) par des fonctions

rationnelles d'une variable indépendante. La question de

résolution rationnelle qui se pose ainsi, trouve une réponse dans le

théorème de Clebsch d'après lequel les courbes unicursales

sont caractérisées par le fait que leur genre p est égal à 0. Le genre

d'une courbe est défini, comme on le sait, par de simples caractères

algébriques.
De même les conditions pour qu'une équation / — 0

puisse être résolue par des fonctions elliptiques d un paramètie,

s'expriment en posant le genre 1; cette condition répond

aussi à la transformabilité de f(x, 0 en une équation du

troisième ordre ou à sa résolubilité par des fonctions rationnelles

d'un paramètre et d'une racine carrée, portant sur un polynôme

du quatrième degré de ce paramètre.
D'une manière générale les problèmes de résolution des équations

algébriques f(x, y) 0, conduisent à la classification des

courbes par rapport aux transformations birationnelles et aux

types normaux de Riemann ou de Brill et Nöther. On trouve

que chaque classe est déterminée par la valeur du genre et par
certaines constantes caractéristiques qu'on appelle les modules

de la classe; pour p>1, leur nombre est 3 — 3.

4. — Passons du cas des courbes à celui des surfaces, et

rappelons d'abord, très sommairement, comment la notion du

genre s'étend à ce cas d'après Nöther et Zeuthen, sans nous

arrêter d'ailleurs sur les développements que la théorie des

invariants a reçu grâce à l'école italienne h En désignant par / une

1 Cf. Castelnuovo et Enriques: «Die algebraischen Flächen vom Gesichtspunkte

der birationalen Transformationen aus ». Encyklöpädie der Math.
Wissenschaften, III, C. 6 b.
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surface d'un certain ordre n, on forme des polynômes adjoints
d'ordre n — 4, 9,,—,, qui s'annulent sur la courbe double de /.
Le nombre de ces polynômes adjoints linéairement indépendants,
nombre qui a une signification invariante par rapport aux
transformations bi-rationnelles, est ce que l'on appelle le genre
géométrique de /. On le désigne ordinairement par pg. D'autre part,
sous certaines hypothèses, on obtient une expression virtuelle de

ce même nombre, formée au moyen des caractères de la courbe
double de /, et qui fournit dans tous les cas un invariant de /.
On a ainsi le genre numérique pa. Enfin à côté de pg et de pa,
on considère encore le genre linéaire p(l), qui est donné par le

genre des courbes découpées sur / par les cpn—^

Pour une surface rationnelle on a: pg pa 0. Mais ces

conditions nécessaires ne suffisent pas à déterminer la classe
des surfaces rationnelles. En effet, une circonstance est à remarquer,

qui a son analogie dans la théorie des nombres idéaux.
Il peut arriver que pour une surface /, d'ordre ft, les surfaces
adjointes <fn_s manquent, tandis qu'il existe des surfaces biad-
jointes d'ordre 2n — 8, passant doublement par la courbe double
de /. Le système découpé sur / par ces s se présente alors
comme le double d'un système canonique qui n'existe pas, et
il conduit également à des invariants de /. Le nombre des 8

linéairement indépendantes est un caractère de / que j'ai appelé
le bigenre ou genre d'ordre 2, P2 ou P, et on a

p-/v
Pour une surface rationnelle on a toujours

P 0

mais réciproquement le bigenre ne s'annule pas nécessairement
avec le genre pg ou pa. C'est ainsi, par exemple, que pour la

j surface du sixième ordre passant doublement par les arêtes
d'un tétraèdre on a pa pg — 0, tandis que le bigenre P 1.

Par contre M. Castelnuovo a démontré que les conditions de
J rationnalité d'une surface se ramènent à annuler en même temps
I le genre, géométrique et numérique, et le bigenre; elles se ré¬

duisent d'ailleurs à pa — P 0.
I Un problème plus général, qui renferme celui des surfaces

L



L'ÉCOLE GÉOMÉTRIQUE ITALIENNE 315

rationnelles, est celui de la détermination des surfaces f (xyz) 0,

représentables paramétriquement par des fonctions rationnelles

d'un paramètre et algébriques d'un autre, c'est-à-dire des

surfaces que l'on ramène par une transformation birationnelle

au type du cylindre <p(uv) — 0. Pour résoudre ce problème, la

considération du bigenre ne suffit plus; il est nécessaire d introduire

encore des genres d'ordre supérieur ou plurigenres P3,

P4, Et alors, résultat remarquablement simple, les conditions

nécessaires et suffisantes pour qu'une surface puisse être ramenée

au type du cylindre sont simplement P4 P6 0.

Les genres d'ordre supérieur ou plurigenres jouent aussi un
rôle dans le problème général de la classification des surfaces,

à côté des genres pa et pg, et du genre linéaire pw. Mais il s'en

faut de beaucoup qu'on parvienne à définir ainsi toutes les

familles de surfaces, ou de classes de surfaces, dépendant de

paramètres ou modules arbitraires. A ce sujet il faut s'attendre à

des complications qui n'ont pas leur analogue dans la théorie
des courbes. Je me bornerai à vous en donner un exemple.
Tandis que les surfaces pour lesquelles pa P3 P5 ••• 0,

P2 P4 t, se ramènent à la famille des surfaces du

sixième ordre passant doublement par les arêtes d'un tétraèdre,

au contraire les surfaces dont tous les genres sont égaux à 1,

pa p. 1, donnent lieu à une infinité de familles distinctes,
renfermant chacune 19 modules. La première de ces familles
est constituée par les surfaces du quatrième ordre, la seconde

par les surfaces du sixième ordre passant doublement par une
courbe du même ordre qui appartient à une quadrique, etc.

5. — Les quelques exemples que je viens de citer, et d'autres
analogues sur lesquels je ne m'arrêterai pas, montrent que les

questions algébriques se rattachent étroitement aux questions
de nombres; dans un sens élargi, elles constituent le même
domaine du discret, où il semble difficile d'apercevoir a priori
l'unité d'une loi. Et pourtant, dans un autre sens très fécond,
c'est bien la loi de continuité qui règne dans ce domaine; cette
même loi que nous avons reconnue sous une forme particulière
dans le principe & invariance du nombre, et qu'il faut découvrir
partout sous des apparences contradictoires. En effet, si les
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problèmes de classification amènent à difïérentier des familles
de courbes ou de surfaces qui répondent à des caractères entiers
et renferment chacune une infinité continue de classes, le pas-,
sage d'une famille à d'autres est toujours possible d'une façon
continue, bien qu'il soit nécessaire de passer par des cas de
dégénérescence, qui n'offrent au premier abord que l'aspect de la
discontinuité.

Il y à d'ailleurs plusieurs manières d'envisager la continuité
du monde algébrique. Celle qui est immédiatement suggérée
par ce qui précède, est la continuité fonctionnelle. En cet ordre
d'idées, après avoir établi que la famille des courbes de genre
P( 1, 2, 3...) renferme une infinité continue de classes qui,
pour des valeurs singulières des modules, comprend les courbes
de genre p — 1, on tâche de ramener l'étude des fonctions de

genre p au cas plus simple de p 0. On arrive alors à reconnaître
qu'en effet les propositions fondamentales pour p quelconque
se réfléchissent dans ce cas particulier, où il s'agit de considérer
tout simplement les fonctions rationnelles d'une variable, par
rapport à p couples de points de niveau que l'on doit supposer
donnés d'avance \

6. — Si l'état actuel de la théorie ne nous permet pas encore
d'atteindre à une vue analogue concernant les surfaces, l'exemple
des courbes montre néanmoins que l'intuition géométrique, par
ce qu'elle a de dynamique, nous aide à percevoir la persistance
de propriétés qui semblent s'évanouir aux yeux de l'analyste.

C'est ainsi que la continuité se laisse découvrir directement
dans la genèse des singularités. Tandis que l'enseignement
ordinaire de l'analyse insiste sur les exceptions que présentent
pour une fonction algébrique y f(x) ses points singuliers,
c'est-à-dire les pôles et les points de ramification, où la fonction
elle-même ou sa dérivée deviennent infinies, la géométrie nous
apprend au contraire à relier ces exceptions aux points où la
fonction est régulière. D'abord le pôle n'est qu'un point de la
droite (x) auquel correspond le point à l'infini de la droite y,
qui, pour la géométrie projective ne se distingue en rien des

1 Cf. Enriques, Math. Annalen, t. 85.
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autres points de la droite. Pour ce qui est d'un point de

ramification, dans le cas le plus simple, ce n'est qu'un point de la

courbe où la tangente devient parallèle à l'axe des y.

D'autre part on obtient des points singuliers plus élevés par

la superposition de plusieurs points de ramification simples:

deux points de ramification qui viennent se superposer,

engendrent un point de ramification d'ordre supérieur (correspondant

à un cycle de troisième ordre) ou bien un point double de la

courbe algébrique, qui est un point critique apparent pour deux

branches de la fonction algébrique. Mais en ce dernier cas encore,

si un nouveau point de ramification s'approche du point double,

les deux branches se fondent en une seule de second ordre, ayant

un point de ramification.
L'étude des points singuliers des courbes ou des fonctions

algébriques, étendue aux cas les plus élevés, constitue une théorie

à laquelle ont travaillé, après Puiseux, Halphen et Nöther,
et qui a progressé ces derniers temps grâce à l'école géométrique

italienne. Cette étude a conduit à développer d'une manière

systématique un chapitre du calcul différentiel, se rattachant

à l'école de Newton, qui est généralement un peu négligé. On

est arrivé à se familiariser avec des passages à la limite qu'on
réussit à exprimer par un schéma graphique, de sorte que l'on

a l'impression de toucher du doigt à des points infiniment
voisins et à des dérivées infinies d'ordres différents.

En réalité le schéma graphique ne fait qu'exprimer la
génération de la singularité, d'après une loi de continuité, qui se

traduit par des conditions différentielles tout à fait précises.

Aussi, obtient-on, à plusieurs points de vue, un véritable complément

de la théorie des cycles de Puiseux. Tandis que les

substitutions considérées par Puiseux ne suffisent pas à déterminer
la nature du point singulier, on réussit cette détermination

en donnant à chaque cycle d'ordre n un exposant, qui peut
dépasser n, et qui résulte, entièrement défini, de la loi de continuité.

Ce dernier résultat a été établi tout récemment par M.

Ghisini.

7. — Cette vue féconde qui consiste à chercher le continu
dans le discontinu, porte aussi des contributions importantes
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à des questions d'algèbre qui touchent de plus près à l'arithmétique.

C'est ainsi que M. B. Levi, après Poincaré, a éclairé
par des méthodes géométriques le problème des solutions
rationnelles d'une équation cubique renfermant deux inconnues.

A cet ordre d'idées se rattache aussi le problème de la
détermination de 1 équation ou la courbe d'ordre minimum à laquelle
on peut ramener une courbe / de genre p donné, par une
transformation birationneîle à coefficients rationnels dans le domaine
des coefficients de /. Pour p 0, Nöther a montré que / peut
toujours être réduite par une telle transformation à une équation

de second ordre (représentant une conique) et d'après des
théorèmes arithmétiques connus, de Lagrange et Legendre,
on est assuré qu'il est en général impossible de pousser la réduction

jusqu'à une équation du premier ordre. Autrement dit,
la résolution paramétrique rationnelle de / exige l'introduction
d une irrationnalité quadratique. Il suffit d'ailleurs de remarquer

qu il est impossible de résoudre en nombres entiers non
nuls l'équation

*2 + r2 + ;2 0

Qu en est-il maintenant pour p 1 Si on opère avec des
transformations rationnelles, en laissant tomber la condition
que les coefficients de la transformation soient aussi rationnels,
on sait que / peut être ramenée à une cubique. On est d'autant
plus étonné de trouver que, si l'on s'astreint à employer des
transformations à coefficients rationnels, il est en général
impossible d'abaisser l'ordre d'une équation f de genre p 1,

On parvient à ce résultat inattendu en transportant la question
du domaine arithmétique à celui des fonctions algébriques.

Par une variation des paramètres, les / produisent un système
de courbes analogues du même genre 1, et il s'agit de trouver
les lignes qui les rencontrent en un nombre de points minimum.
Le théorème énoncé revient d'ailleurs à dire que «la résolution
paramétrique d'une équation de genre 1, f(xy) 0, par des
fonctions elliptiques, introduit une irrationnalité à laquelle
s'ajoute encore une irrationnalité quadratique par rapport
aux coefficients, dont le degré est en général celui de /. »

En passant au cas de p 1, et en employant toujours des
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transformations à coefficients rationnels, on réussit au contraire
à réduire toute courbe de genre p à un type d'ordre donné.

Cet ordre est en général 2p — 2 pour p > 2, e p -fi 2 pour p 2

pour le cas hyperelliptique. Ainsi par exemple, par une

transformation rationnelle à coefficients rationnels toute courbe de

genre 2 peut être changée en une courbe d'ordre 6, tandis qu'il
faut ajouter aux coefficients une irrationnalité quadratique pour
l'abaisser au 4me ordre, etc.

Dans tous ces cas, l'impossibilité d'une réduction ultérieure,
affirmée par les propositions que nous venons d'énoncer, se

réduit toujours à la non-existence de courbes algébriques
découpant en un certain nombre de points les courbes de genre p
qui constituent un système construit de façon convenable.
C'est ainsi que l'introduction du continu vient éclairer des

questions d'irrationnalité, qui se posent d'abord sur le terrain
de l'arithmétique.

8. >— Au commencement de cette conférence, je vous disais

que les équations et les fonctions algébriques nous amènent
d'une part à des questions de résolution et d'autre part à des

questions d'existence. A cet égard la géométrie apporte à l'analyse

une contribution des plus précieuses. Car on ne saurait
exagérer la valeur des exemples qui éclairent les questions de
classification des surfaces, et que je vous rappelais tout à l'heure.
Si la conception du bigenre a pu être développée d'une manière
fructueuse, c'est que la surface du sixième ordre passant
doublement par les arêtes d'un tétraèdre, nous fournissait à cet
égard un exemple simple et instructif. De même, si on a pu
supposer l'existence des familles, infinies de surfaces de genres 1,

que l'on est parvenu à établir ensuite au moyen des fonctions
hyperelliptiques, c'est que l'intersection de deux variétés d'ordre
respectif 2 et 3 dans l'espace à quatre dimensions, nous a amené
d'abord à considérer une famille de surfaces de genre 1 distincte
de celle des surfaces du quatrième.ordre.

Ces considérations sont évidentes. Il est. nécessaire de les
compléter en montrant que par la construction d'exemples
particuliers on réussit souvent à résoudre des questions d'existence
dans un sens tout à fait général.
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Je m'efforcerai d'expliquer ce point essentiel en me rapportant

au théorème classique de Riemann, qui concerne l'existence des
fonctions algébriques dont on se donne de façon arbitraire les
points de ramification. On sait quelles difficultés se rattachent
à la démonstration de ce théorème, en s'appuyant sur le principe

de Dirichlet.
Or on peut établir le théorème de Riemann par une voie

algébrico-géométrique, qui est extrêmement simple et suggestive

\
R faut d'abord se rapporter à la proposition élémentaire

— que j'ai établie d'une autre façon en 1912 — d'après laquelle,
en supposant n"p-2p— 2, il existe au moins une fonction
algébrique irréductible de degré n, qui possède m points de
ramification arbitraires. On passera aux moindres valeurs de n,
et également au cas de points de ramification multiples, par
le rapprochement indéfini de couples de points de ramification.
Il est aisé ensuite de compléter le théorème de Riemann, pour
ce qui se rapporte au choix des substitutions sur les branches
en correspondance avec les points singuliers (d'après une simple
remarque de M. Severi, moyennant la réduction bien connue
des surfaces de Riemann au type de Lüroth-Clebsch).

Le problème élémentaire que nous venons de poser se ramène
à la construction d'une courbe d'un certain ordre ayant
un point multiple d'ordre h,tangenteà m droites issues de ce
point, et ayant ailleurs un certain nombre de points doubles.
Il est aisé de prouver qu'il y a autant de paramètres qu'il en
faut pour qu'on puisse satisfaire aux conditions demandées;
il faut par contre établir que parmi les courbes qu'on construit
ainsi, il y en a qui sont irréductibles. Or cela est évident a priori
dans les cas où le problème d'existence se trouve résolu, par
exemple, dans le cas hyperelliptique, qui correspond à un choix
particulier du groupe G des m points de, ramification. Mais si
la courbe hyperelliptique, que l'on obtient par les conditions
posées peut être considérée comme limite d'une courbe G

correspondant à un choix tout à fait: général du groupe G, le prin-

1 J'ai indiqué cette démonstration dans une note de l'Académie de Bologne
(17 avril 1921) et elle se trouve développée à la p. 361 du Vol. III de mes Leçons
citées au n° 2.
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cipe de continuité nous assure que cette même courbe C sera

irréductible. En tenant compte en plus de quelques détails,

cette considération suffit à établir notre théorème.

9# — je terminerai mon exposé en disant quelques mots

de l'extension du théorème d'existence aux fonctions

algébriques de deux variables indépendantes. La question se pose

ici d'une manière nouvelle. Une fonction z f(x, y) d'un
certain degré /i, possède une courbe de ramification F (x, y) 0,

d'un certain ordre m, qui aura en général un certain nombre

de nœuds et de points de rebroussement, dépendant des caractères

pa et de la surface (xyz). Mais cette courbe F ne saurait

être donnée de façon arbitrire. Il s'agit donc de déterminer les

conditions auxquelles doit satisfaire une courbe F (x, y) 0 pour
qu'elle soit la courbe de ramification d'une fonction algébrique
de degré n, z f(x, y). Ces conditions se traduisent en des conditions

élémentaires imposées aux tangentes menées d'un point
(xy) à la courbe F et également aux nœuds et aux points de

rebroussement de la courbe F. Ainsi la question posée reçoit
une réponse, qui toutefois ne. laisse pas de donner lieu à des

difficultés dans les applications. Il en résulte par contre au
moins une conséquence importante; c'est que, si une courbe F,

ayant un certain nombre de nœuds et de points de rebroussement,

satisfait aux conditions d'existence de la fonction /,
ces conditions sont aussi satisfaites pour toutes les courbes du
même ordre que F, qui possèdent le même nombre de nœuds

et de points de rebroussement qu'elle, et qui appartiennent à une
même suite continue renfermant F. Dans ce domaine, comme dans

celui des courbes, on parvient ainsi à une vision de continuité
qui promet d'être féconde pour le problème de la classification
des surfaces.

10. — Messieurs, j'ai déjà parlé un peu longuement, et abusé

peut-être de votre indulgence. Et cependant je suis loin de vous
avoir donné un compte rendu, même sommaire, des recherches

que l'école italienne a entreprises dans le domaine des équations
et des fonctions algébriques, et qui relient en un lien intime et
fécond le côté algébrique et le côté transcendant que présentent
ces questions. Je me suis borné à vous expliquer par quelques

L'Enseignement mathém., 23e année; 1923. 22
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exemples quel est l'esprit qui domine ces recherches. Ainsi que je
vous le disais en commençant, la géométrie s'est vidée pour nous
de toute préoccupation de purisme, et même si vous le voulez,
elle a disparu, comme discipline autonome, pour se fondre dans
l'analyse. Mais par là-même, des intuitions et des méthodes que
1 on avait cultivées avec soin en vue de buts particuliers, se
sont rattachées au courant traditionnel de problèmes que le
développement des mathématiques pose nécessairement à
notre esprit. Si quelqu'un nous reproche de nous occuper de
fonctions tout à fait particulières, en comparaison de celles
qui surgissent des problèmes de la nature, je répondrai que le
progrès de l'analyse paraît toujours résulter d'un contraste
entre deux tendances de l'esprit mathématique, que l'on pourrait

rattacher aisément au réalisme et au nominalisme du Moyen-
Age. Nous nous efforçons d'une part de saisir une réalité
extérieure qui s'impose à notre esprit et dépasse les cadres de nos
constructions conceptuelles; d'autre part nous tâchons aussi
de poursuivre le développement de ces constructions d'après
les lois de notre propre esprit, qui pose d'abord le concept du
nombre rationnel et des fonctions élémentaires. C'est par là
que l'on est conduit aux fonctions algébriques et à celles qui
en dérivent par des procédés bien définis, fonctions qui sont à
peu près toutes celles que l'on peut regarder comme connues,
et au sujet desquelles on peut poser des questions qualitatives.
Je sais qu'entre les deux conceptions il y a un abîme, que le
progrès a creusé de plus en plus; la réalité, en effet, que l'on
s'était cru en état de ramener à la simplicité, qui est la loi de
notre pensée, déborde des exigences de notre entendement.

Devons-nous en conclure qu'en excluant toute question
qualitative, il faudra se confiner à une mathématique purement
quantitative qui, pour atteindre au général, se réduira
probablement à un calcul d'approximations

Je pose la question sans avoir la prétention de la résoudre.
Je suis convaincu d'ailleurs que l'histoire de la science est plus
libérale que n'importe quelle doctrine philosophique particulière,

et que, si elle ouvre souvent des voies nouvelles, il est
moins concevable qu'elle ferme celles que la pensée a parcouru
pendant des siècles.
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