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SUR L'INVERSION DES PRODUITS ARITHMÉTIQUES

PAR

E. T. Bell (Seattle, Wash.)

— Dans une étude sur les travaux arithmétiques de Gauss,

M. A. Aubry 1 observa que la formule

®{a) -f- <p(/>) + f (n)

où a, 5, sont tous les diviseurs de l'entier n, <f(ri) étant la

fonction d'Euler, « semble avoir donné le signal de la découverte

d'une foule de relations arithmétiques qu'il y aurait grand
intérêt à réunir et à rapprocher ». Je crois avoir rempli ce

desideratum avec une algèbre symbolique que je construisis en 1915,

et que je simplifiai dans quelques notes et articles parus plus
tard 2. Cette algèbre donne le moyen immédiat de réaliser l'idée
de M. Aubry pour un co,rps quelconque d'éléments ayant une
loi de résolution unique en facteurs irréductibles, soit par exemple

le corps des entiers rationnels ou les idéaux d'un corps
algébrique donné. On peut appliquer d'une façon immédiate
les principes extrêmement simples de cette algèbre pour réunir
et augmenter encore le nombre des relations entre les fonctions
numériques trouvées, et dont un exposé a été donné par M.

Dickson dans son History of the Theory of Numbers (tome 1,

chapitres 5, 10, 19).
Dans la présente Note j'applique des principes de la même

espèce à l'inversion des produits

1 L'Enseignement mathématique, tome 11 (1909), p. 438-439.
2 Voir, par exemple, Bulletin of the American Mathematical Society, vol. 27, pp.

330-332; Transactions (of the A. M. S.), vol. 25, pp. 135-154.
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306 E. T. BELL
où le 11 s'étend à tous les couples d7 $ de diviseurs conjugués de
l'entier n7 et où /, g sont des fonctions numériques quelconques.
Comme cas très spécial de l'inversion générale on trouve une
formule importante de Dedekind.

2. — Rappelons quelques principes simples de la méthode
citée. Soit n un entier quelconque > 0, et (n), /2(/i),
fr{n) des fonctions numériques. Posons symboliquement la
somme

sai/;k)/^2) ...fr(dr)

où 2# s'étend à tous les systèmes (di7 da, dr) de r entiers
> 0 dont le produit est n7 égal au produit symbolique

/i /à • * * 1 r '

de sorte que
fl (^i) A (Al fr A) — fl fr '

On voit sans peine que le produit symbolique /2 fr reste
invariant sous toutes les permutations de fi7 /2, fr. Ainsi
cette multiplication symbolique est commutative. Elle est aussi
associative. Par exemple

/i(/2/3) Sn[/i(rf)Sj,/i(8J)/g(SJj]^ do, 0 S2)

(Ad £n "d1d2dz)

flUU

L'unité de cette multiplication est la fonction rl7 où

ri (1) — 1 rj(//) 0 [n > 1) ;

car on a n f /, / étant une fonction numérique quelconque.
La fonction f telle que

r - *1

est unique quand / est donnée.
Je l'ai nommée la fonction réciproque de /.
Soient fu /2, ..g17 ga, A,, A2, des fonctions numériques

telles que

flfi '*• frt> 1 02 ••• §S ~~ A A ••• ^t '
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Le produit g, gs gs est une fonction numérique, soit g;
ainsi de même pour h, h, ht, soit h. Soit g' la fonction

réciproque de g, de sorte que gg' et posons

hs=-»
symboliquement, par analogie avec l'artihmétique ordinaire.

Donc, de la relation donnée on tire

h. h9 ht
fill - fr=—-•

Ol 02 • • '

Ces fonctions symboliques ont toutes les propriétés multiplicatives

des fractions arithmétiques. Ainsi, par exemple, la
multiplication indiquée par x étant symbolique au sens de cette
algèbre, on a

/1/2 **• fr 0102 ••• Ss /1/2 fp
^giS2---gs à1h2...ht

3. — Pour étendre l'ismorphisme j'écris symboliquement

JJ[/VifW) f (i)
n

Soient maintenant /(«), g(n),h(n), des fonctions numériques

telles que

fs hh(2)

et soit g' la fonction réciproque de g, et k' celle de k. Donc, je
dis,

f hS' (3)

en analogie complète avec l'algèbre ordinaire.
Pour démontrer (3), on obtient de (2)

Sno(S) \°gf(d)2„&(S) log

ou, si l'on pose log f(n) F (n),logh{n) H(re),

#F *H
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Multiplions symboliquement cette identité par y, où y est une
fonction numérique arbitraire. Donc

zmz

ou, ce qui est la même chose,

ft*

Soit maintenant y la fonction spécifique g k!. Donc yg k\
cpk g, et on a (3).

L'inversion de Dedekind est le cas spécial où g u, k y,
et u(n) est la fonction numérique

u(n) 1 (tz — 1,2,3,...).
Car la fonction réciproque de r,estelle-même, et la fonction
réciproque de u est la fonction p. de Möbius, où a 0 quand
n contient un facteur premier à une puissance > 1, et y.(n) 1

ou — 1, selon que n est le produit d'un nombre pair ou impair
de facteurs premiers distincts. Dans ce cas (2), (3) deviennent

f" h*f- — Af

ou, en forme non-symbolique,

f(d\— h (n), f(JJ[^(a,)]"(d)
n n

University of Washington.
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