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SUR L’INVERSION DES PRODUITS ARITHMETIQUES

PAR

E. T. BELL (Seattle, Wash.)

1. — Dans une étude sur les travaux arithmétiques de Gauss,
M. A. Ausry ! observa que la formule

¢la) + o(h) + ... = o(n) ,

ou a, b, ... sont tous les diviseurs de ’entier n, ¢(n) étant la
fonction d’Euler, « semble avoir donné le signal de la découverte
d’une foule de relations arithmétiques qu’il y aurait grand
intérét & réunir et a rapprocher ». Je crois avoir rempli ce desi-
deratum avec une algébre symbolique que je construisis en 1915,
et que je simplifiai dans quelques notes et articles parus plus
tard ®. Cette algébre donne le moyen immédiat de réaliser I'idée
de M. Aubry pour un corps quelconque d’éléments ayant une
loi de résolution unique en facteurs irréductibles, soit par exem-
ple le corps des entiers rationnels ou les idéaux d’un corps
algébrique donné. On peut appliquer d’une facon immédiate
les principes extrémement simples de cette algébre pour réunir
et augmenter encore le nombre des relations entre les fonctions
numériques trouvées, et dont un exposé a été donné par M.
Dickson dans son History of the Theory of Numbers (tome 1,
chapitres 5, 10, 19). |

Dans la présente Note j’applique des principes de la méme
espéce a l'inversion des produits

H[/‘(dﬂ""(‘” .

1 I’Enseignement mathématique, tome 11 (1909), p. 438-439.

2 Voir, par exemple, Bulletin of the American Mathematical Society, vol. 27, pp.
330-332; Transactions (of the A. M. S.), vol. 25, pp. 135-154.

L’Enseignement mathém., 23- année, 1923. 21
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ou le 11 s’étend & tous les couples d, ¢ de diviseurs conjugués de
Uentier n, et ou f, g sont des fonctions numériques quelconques.
Comme cas trés spécial de I'inversion générale on trouve une
formule importante de Dedekind.

2. — Rappelons quelques principes simples de la méthode
citée. Soit n un entier quelconque > 0, et f,(n), f,(n), ...,
fr(n) des fonctions numeériques. Posons symboliquement la
somme

Sahildf(dy) - f(d,)

ou 3, s’étend & tous les systémes (d,, d,, ..., d,) de r entiers
> 0 dont le produit est n, égal au produit symbolique

Lify - 1r s
de sorte que
Enfl(dl}/z(dz) ves f,(dr) — f1/2 f’ .

On voit sans peine que le produit symbolique f, f, ... f. reste
invariant sous toutes les permutations de f,, f,, ..., f.. Ainsi
cette multiplication symbolique est commutative. Elle est aussi
associative. Par exemple

Lillals) = 00 A) 25 (301 /(8 ] (n = dB, & =18,3,) .
= X, f1(d) p(dy)f5(dy)  (n==d,d,d,) ,
= filfs -
L’unité de cette multiplication est la fohctioh 7, Ol
1) =1, ) =0, (p>1);

car on aynf = f, f étant une fonction numérique quelconque.
La fonction f telle que

=

est unique quand f est donnée.
Je I’ai nommée la fonction réciproque de f.
Sotent fi, fy, ..., &1 8o -+, By Ry, ... des fonctions numé-

riques telles que

fify o 1,88 o 8§ = Iyhy oot b,

|
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Le produit g, g, ... g est une fonction numérique, soit g;
ainsi de méme pour %, h, ... ki, soit k. Soit g’ la fonction réci-
proque de g, de sorte que gg' = », et posons

I
Yq | >~

hg'

symboliquement, par analogie avec l’artihmétique ordinaire.
Done, de la relation donnée on tire

h h, ... h

, 1/g oo My
f1/2...fr:-——————aa — .
5152 "' B

Ces fonctions symboliques ont toutes les propriétés multipli-
catives des fractions arithmétiques. Ainsi, par exemple, la multi-
plication indiquée par X étant symbolique au sens de cette
algébre, on a

Lty - 1 888 fila- 1,
. —

.y  hyhy . h, )

S| Oq
>

o o
01b2 """ Dy 172 °*

3. — Pour étendre I'ismorphisme j’écris symboliquement

T = . )

n

Soient maintenant f(n), g(n), kh(n), k(n) des fonctions numé-
riques telles que C |

(8 = hk | | (2)

et soit g’ la fonction réciproque de g, et k' celle de k. Donc, je
dis,

fk, — h8 , (3)

en analogie compléte avec V'algébre ordinaire.
Pour démontrer (3), on obtient de (2)

2,8(0) logf(d) = Z,k(3) logh(d) ,

ou, s1 on pose log f(rn) = F(n), log k(n) = H(n),

gF —= i4H .
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Multiplions symboliquement cette identité par ¢, ou ¢ est une
fonction numérique arbitraire. Donc

gF = okH
ou, ce qui est la méme chose,

fc‘pg — pth .

Soit maintenant ¢ la fonction spécifique g'k’. Donc ¢g = ¥/,
ok = g', et on a (3).

L’inversion de Dedekind est le cas spécial ou ¢ = u, k = 9,
et u(n) est la fonction numérique

un) = 1 (n =1,2,3, ...

Car la fonction réciproque de » est » elle-méme, et la fonction
réciproque de u est la fonction . de Mgbius, ot u.(r) = 0 quand
n contient un facteur premier a une puissance > 1, et w(n) =1
ou — 1, selon que ~n est le produit d’un nombre pair ou impair
de facteurs premiers distincts. Dans ce cas (2), (3) deviennent

“=hn",  ft =,

ou, en forme non-symbolique,

Hf(d) = hin),  fln) = H[h(d)]‘“(d“ ,

n

University of Washington.
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