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VIII. — Métrique. Courbure. Gravitation.

Maintenant que nous avons constaté que la dérivation d'expressions
à deux indices conduisait à percevoir l'existence d'une

forme quadratique (28), il reste à s'expliquer sur les coefficients
gij de celle-ci et sur le choix des fonctions r jusqu'ici complètement

indéterminées. C'est là que peuvent intervenir diverses
hypothèses auxquelles correspondent diverses théories gravifiques.

L hypothèse la plus simple, à laquelle correspond la géométrie
de Riemann, consiste à admettre que toutes les dérivées en D
des gij sont nulles. Ceci entraîne, d'après les formules du
paragraphe VI, que des gv et des g\ ont également leurs dérivées
en D identiquement nulles, si gij est le quotient par g du mineur
de gij dans le déterminant g des g£J et si

J ai 0 si i jSj-Z &aj ~ | si iJy (32)

Rappelons que l'équation
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On a ainsi
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Les B à quatre indices exprimés en (31) sont alors les
composantes de la courbure riemannienne, courbure dont la théorie
pourrait être ici esquissée rapidement. Allons plus directement
au but en utilisant l'opérateur (32) qui, aux B à quatre indices,
fera correspondre des G à deux indices seulement (contraction;
Verjüngung), soit

fl k ufo
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Ces G sont encore des composantes de courbure, ce que, par
exemple, on peut vérifier aisément dans le cas d'une surface

ordinaire sur laquelle on aurait

ds2 gn da[ -f 2 gl2 d.x\ dx2 + g22 dx\

Alors gai correspond à la courbure totale de la surface.

Pour revenir au cas général, l'essentiel est que l'on tient
maintenant des G7i- et des g,/t qui sont en même nombre (10 dans

E4) ; l'équation
Gvi 0 (33)

qui est la plus simple des lois de gravitation, exprime un mode
de courbure de l'espace-temps qui est vraisemblablement le

plus simple. Cette équation permet la détermination des gah
c'est-à-dire d'un ds2 auquel correspondent des géodésiques-
trajectoires, etc.

Nous n'irons pas plus loin dans cette voie car l'exposition
que nous aurions à faire pour continuer ne différerait pas de

celles déjà faites par maints auteurs.
Terminons par quelques remarques analytiques.
Pour arriver à (33), il vaut mieux passer par (30) que par (29).

En effet, former les G à partir de (29) c'est faire, dans le second
membre a i, opération impossible à indiquer sur le premier
membre qui ne porte pas explicitement l'indice a. Il en est
autrement, avec (30), pour k j et l'on pourrait même énoncer
la loi de gravitation (33) sous cette forme: les expressions

D I)
L).r. U.r
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Dpy j)P;
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sont nulles, quel que soit le vecteur P. Sous cette physionomie, on
voit combien la loi est proche des formules stokiennes
fondamentales qui ont également servi de base à l'électromagnétisme.

Soyons également très bref sur les déjà nombreuses extensions
des théories einsteiniennes. Ainsi A.-S. Eddington (Math. Theory,
p. 217) pose
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en faisant naître cette formule de considérations métriques
inutiles à invoquer ici comme base.

^jk.i gjkxn on ^trouve la métrique de Weyl; pour
nul celle de Riemann.
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