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lerons des M,*-, pour lesquels

JLM* + —M* + —M* 0
hx2 34 àx3 42 Ö£4 23

+ —M* + — M* 0
41 ö£4 13 dXj 34

É—M
* +1m'+-M* 0

ôa:4 12 i>xt 24 öz3 41

i-M* + — M* + — M* 0
dse, 23 ül

(15)

Ces Mj* existent évidemment; ils sont de la forme

5$,. ô4\-
M.. —lJ ÛX- ÜXf

1

les <5>i étant dits potentiels électromagnétiques.
Les équations (15) constituent le second groupe des équations

de Maxwell-Lorentz généralisées. Elles expriment que Mijdxidxj
est une différentielle exacte dans E4.

IV. — Champ de Maxwell-Lorentz;.

Imaginons que l'on réduise la généralité précédente en posant

M12 tL M14 - chx ; m; h, M* c*x

M23 dx M24 - chy ; M* h, < cày

M31 dy M34 -chz ; hy„. M* cdz

Alors, en écrivant x. y, z ,t pour xn x2, x3, x4l et c étant une
constante, les équations (14) deviennent
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De même les équations (15) deviennent

hdz hdy 1 6hx
hjT hz

~~~
C Ö«

1

cv P-

1
H & P-

1
1 ö ht/

hz OX c ht

H/ _
1 dh.

hx ÖJ c ht

ôhX ôhv
77 + V +

öh,
~hz

:
0

(17)

Bien que la notation vectorielle n'ait rien d'indispensable, elle
intervient ici commodément pour rassembler les systèmes (16)
et (17) sous la forme

.i- 1 ôd prot h — S -| div d — p s — —V
c ht r c

^ „
(18)

rot d div h — 0
c ht

Telles sont les équations de Maxwell-Lorentz qui, à vrai dire,
sont aussi bien celles de Faraday-Ampère.

Des deux dernières on conclut h — rot f et

rot d — 1— y,V c ht/ C ht vr

si V désigne l'opération^, ^ qui s'applique à une quantité

<f(x, y, z, t) scalaire.
Portant dans la première équation (18), on a

.2* 9£ i • a ,1 d2f 1 Ö CD-rotM -Vf-Vd,vf » + -,_ +-V-,.
Avec la relation supplémentaire de Maxwell

i. » -
1 ô CD

dlvf + 7ô7=0' (19>

il reste Véquation vectorielle

»«
1 ö2f-vf-7^ s- <2°)
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Enfin, la seconde équation (18) donne

d'où, d'après la relation supplémentaire, Véquation scalaire

On voit que l'étude des équations (18) est ramenée à celle de

(19), (20), (21).
Bien entendu

mais, même si l'on ne connaissait pas cette signification de va>

on la retrouverait aisément en suivant le fil du calcul. Il en est

de même pour toutes les notations vectorielles du présent

paragraphe.

Soit p 0. Les équations de Maxwell-Lorentz se simplifient.
Le vecteur v, qui correspond à la conductibilité électrique

proprement dite, disparaît. Il ne reste, dans les seconds membres

de (16), que le fameux courant de déplacement suffisant pour
bâtir l'optique. Alors les équations (16) et (17) sont vérifiées par

tous les autres d et h étant nuls. Cette solution élémentaire

pourrait servir à en construire bien d'autres, à cause du caractère

linéaire des équations; toutes ces solutions présenteraient

une même propriété: celle de ne changer en rien quant t augmente
de T et x de cT. Nous sommes donc en présence d'un phénomène
de nature périodique qui se propage avec la vitesse c. C'est

l'onde électromagnétique, c'est la lumière.
Les équations (20) et (21) rentrent dans la forme, unique

y. Optique. — Relativité restreinte.
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