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PEDAGOGIE DES THEORIES D EINSTEIN
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Ces M;; existent évidemment; ils sont de la forme
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les @, étant dits potentiels électromagnétiques.

Les équations (15) counstituent le second groupe des équations
de Mazxwell-Lorentz généralisées. Elles expriment que M, dx;dx;

est une différentielle exacte dans E,.

IV. — CuHAMP DE MAXWELL-LORENTZ.

Imaginons que ’on réduise la généralité précédente en posant

M,=d, , M,=—ch,; M'=h_, M = cd

My, =4d,, M,, = — ch, ; M: =h,, M, =cd
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M, = dy , M,, = — ch; ; M31 f— hy“" , M34 —

cd._ .

Alors, en écrivant z, y, z ,t pour z,, &,, &3, x,, et ¢ étant une

constante, les équations (14) deviennent,
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De méme les équations (15) deviennent

od, Ddy 10h,
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Bien que la notation vectorielle n’ait rien d’indispensable, elle
intervient ici commodément pour rassembler les systémes (16)
et (17) sous la forme

1od ' . __ P
rOth_—s+—c—57’ led—-—-P, S-—-:V,
(18)
rotd:-—-lgg, divh — 0 .
c 0Ot

Telles sont les équations de Maxwell-Lorentz qui, & vrai dire,
sont aussi bien celles de Faraday-Ampére.

Des deux derniéres on conclut h = — rot f et
1 of 10f
I‘Ot(d—“c—a>—0, d"-—’c—’b'—t—-V? ,

0 0 0

- : .
520 3y 5n qW S applique & une quan-

si v désigne l'opération
tité o(z, v, z, t) scalaire.
Portant dans la premiére équation (18), on a

1 o%f 1 00

e rof2f — 28 sof — - o
rot*f = — ¢f vdnf_s—}—czmz—{—cvot.
Avec la relation supplémentaire de Mazxwell
100
il reste Péguation vectorielle
' 2
— Vi — 1 L s (20)
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Enfin, la seconde équation (18) donne

: 1 of
d1v<vq>—l—?b—t->:: e

d’ou, d’aprés la relation supplémentaire, Péquation scalare
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On voit que 'étude des équations (18) est ramenée a celle de
(19), (20), (21).

Bien entendu
62 + 02
n? = 0s?

62
— = — +
mais, méme si ’on ne connaissait pas cette signification de Vv?,
on la retrouverait aisément en suivant le fil du calcul. 1l en est
de méme pour toutes les notations vectorielles du présent
paragraphe.

V. — OPTIQUE. — RELATIVITE RESTREINTE.

Soit o = 0. Les équations de Maxwell-Lorentz se simplifient.
Le vecteur v, qui correspond a la conductibilité électrique pro-
prement dite, disparait. Il ne reste, dans les seconds membres
de (16), que le fameux courant de déplacement suffisant pour
batir Poptique. Alors les équations (16) et (17) sont vérifiées par

x

dy = h, = acosn(t ——z—> :
tous les autres d et h étant nuls. Cette solution élémentaire
pourrait servir & en construire bien d’autres, & cause du carac-
tere linéaire des équations; toutes ces solutions présenteraient
une méme propriété: celle de ne changer en rien quant ¢ augmente
de T et z de ¢T. Nous sommes donc en présence d’un phénomene
de nature périodique qui se propage avec la vitesse ¢. Cest
I’onde électromagnétique, c’est la lumiére.
Les équations (20) et (21) rentrent dans la forme unique
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