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Si l'on emploie l'inégalité connue de Schwarz

b \ 2 b• O \ * v

f f(t)dt\^ b-
a / «

où l'on suppose 6 > on trouve que la valeur moyenne des

fonctions | A (a?) | et | P (rc) | est au plus du même ordre que Vx.

6. — Laméthode de Landau.

La méthode basée sur l'étude des fonctions de variables

complexes s'appuie sur le lien qui existe entre le nombre des

points entiers de certains domaines et la convergence de

certaines séries de Diricblet. Nous n'avons à considérer ici que les

séries de Dirichlet ordinaires, c'est-à-dire celles du type

ns '
n= 1

les an étant des coefficients constants et 5 une variable complexe.
Si cette série converge en un point s0, elle converge en chaque

point s ayant une partie réelle plus grande. Pour le démontrer,

posons
k

<*>„

donc
a..

Si v et w sont des nombres entiers (w > v 1), on a

.F - F F ^ F„* n ~ b n—1 n n

7 "" -ÄJ ~~ ^ n5-"o -ÂÏ (n + 1
n=zv n=v n=v n=v—1 x

w w—1 ' -2?=2^-^.) +
ti-— a iir=.u v \ i f r

(8)
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On a

1
(s - s0) r —01JM^o+lfV (n -f l)5 5o

n

donc

?r.S—I (n + l)-s'—-s'o

1

^ Is-*ol • f ,(9)n

p désignant la valeur réelle de s —s0. En vertu de la convergence
de la série en question en s0, le nombre F„ est borné, donc en
valeur absolue plus petit qu'un nombre constant A; on a donc
d'après (8) et (9)

Comme p est positif (parce que la partie réelle de s est plus
grande que celle de s0). l'expression finale tend vers 0 pour v
croissant indéfiniment, de sorte que la série de Dirichlet en
question converge au point s.

Il s'ensuit que pour une série de Dirichlet, on a trois cas
possibles: convergence en chaque point, comme par exemple
pour la série

divergence en chaque point, comme par exemple pour la série

ou bien il y a une droite parallèle à l'axe imaginaire telle que la
série diverge à sa gauche et converge à sa droite. L'abscisse de
cette droite s'appelle l'abscisse de convergence de la série, et
il y a une relation simple entre cette abscisse « et l'ordre de
grandeur de la fonction

< A j s — s i. ^ + A
léi { «,+1 ** c (10)

1

SD) «
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En effet, si a > 0, on a pour chaque nombre s positif

S(x) 0(xa+s)

et inversément, si

S(tf) o{x$) (11)

l'abscisse a de convergence est < ß. Pour démontrer la première
de ces propriétés, nous appliquerons l'inégalité (10) en y posant
s — 0, v 1, w E(x), de sorte que le membre de gauche de

cette inégalité est égale à la valeur absolue de S(x). Nous devons

poser s0 a + e, parce que la série converge en ce point ;

alors p — (a + s), donc

X

| S (.*.•) | < A. (a + i)f ua+s~ldu+ Aaa+S + A
1

Pour démontrer la seconde propriété, il suffît de montrer que
la série de Dirichiet converge pour chaque nombre réel s > ß,
c'est-à-dire il suffit de montrer que pour chaque nombre
s ß + s (s > 0) le membre de gauche de la relation (8) tend
vers 0, si ç croît indéfiniment. Posons s0 0, donc p s — s0

ß + s. Le nombre F„ est égal à S (n) et d'après (11) il existe

un nombre constant A tel que la valeur absolue de Fn est
inférieure à Ar$ et à A(ra+ l)ß, donc inférieure à u?, u désignant
un nombre quelconque dans l'intervalle n<L u<^n-\- 1.

Il s'ensuit
tt-j-l «+ 1 7i+'l

I p I r du ^ C ß du r du
1 -'•/ J+ÎH =A7 ?T-

n il n

D'après (8) et (9) on a

» « x f* du A A
<A.|p + e|.y +ue+ l a,* ^ oS

et l'expression finale tend en effet pour chaque nombre positif
£ vers 0, si e croît indéfiniment.

De ces considérations on déduit un lien entre nos problèmes
et la convergence de certaines séries de Dirichiet. Comme
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exemple nous prendrons le problème du cercle. Le nombre des
points entiers du cercle v?+ p2 est égal à la somme

2 r(»)
0 <^n<^X

t {n) désignant le nombre des solutions entières de l'équation
u2 -f- ç2 — n. D'après le résultat de M. Sierpinski la fonction
itx représente cette somme avec une erreur dont l'ordre ne

3

surpasse pas celui de [/x, donc

2 M"' ~ °(x3).
1 < n <Ç x
n entier

de sorte que la série de Dirichlet

r (n)— 71

a une abscisse de convergence ^^.Si nous pouvons démontrer
directement ce théorème, nous aurons montré que pour chaque
nombre s positif nous avons la relation

2 (r(n) — t) o(a;ï+e)
1 <^n <Ç x
n entier

donc

p { j : r(n) — tcx —
1 x
n entier

M. Landau1 a publié en 1912 une méthode au moyen de
laquelle on peut trouver une démonstration directe dans ce cas
et dans bien d'autres. Cette méthode est applicable pour des
domaines à k dimensions pour lesquels la série correspondante
de Dirichlet satisfait entre autres à une équation fonctionnelle
analogue à celle de la fonction Ç (s) de Riemann. Il applique cette

1 Gott. Nachr. (1912), p. 687-771 ; (1915), p. 209-243 ; (1917), p. 90-101
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méthode entre autres 1 aux problèmes concernant l'ellipsoïde

à k dimensions 2.

La méthode de Landau se sert, il est vrai, de propositions

exigeant des connaissances mathématiques assez profondes,

mais elle conduit parfois très rapidement au but. Par exemple

M. Landau 3 n'a besoin que de 2 pages pour démontrer la

proposition de Sierpinski

p(x)o

tandis que M. Sierpinski4 a besoin d'environ 40 pages pour la

démonstration du même théorème par la méthode de Yoronoi.

Un des grands avantages de l'emploi des variables complexes

est qu'il conduit non seulement à des résultats contenant le

symbole O, mais encore à des résultats contenant

MM. Landau 6, Hardy6, Wigert7 et Cramér8 ont appliqué

la théorie des nombres complexes au problème des diviseurs

et à celui du cercle. M. Hardy a montré:

P(ai) û(\/ xlogy) et A(.r) û(\/* log x log log x) ;

si ak désigne la limite inférieure de l'exposant ßk pour lequel

la relation
\k(x) o(A)

est encore juste, on a

l 1 l „ „ i — 1 k — 2

"4 a2 3" ' 3" —
1X3"2 ' 2k afe k

En admettant l'hypothèse de Riemann que toutes les racines

1 Gott. Nachr. (1917), p. 102-111 ; Einführung in die elementare und analytische Theorie

der algebraischen Zahlen und der Ideale (1918), p. 131 ; Math. Zs., 2 (1918), p. 52-154.
2 Berl. Ber. (1915), p. 458-476; Wien. Ber. (IIa), 124 (1915), p. 445-468.
s Math. Zs., 5 (1919), p. 319-320.
4 Prace mat. fiz., 17 (1906), p. 77-114.
5 Batt. G., 51 (1913), p. 73-81 ; Münch. Ber. (1915), p. 317-328 ; Gott. Nachr. (1915), p. 161-

171 ; Math. Zs., 5 (1919), p. 319-320.
G Quart. J., 46 (1915), p. 263-283 ; Lond. M. S. Proc. (2), 15 (1916), p. 1-25 et p. 192-213 >

18 (1919), p. 201-204.
7 Acta Math., 37 (1914), p. 113-140. Cf. Landau, Gott, gelehrte Anzeigen, 177 (195),

p. 377-414.
8 Ark. for Mat., Astron. och Fys., 21 (1922).
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complexes de la fonction Ç(s) se trouvent sur la droite d'abscisse

2", M. Landau1 a déduit d'une proposition due à M. Littlewood2

qu aucun des nombres «ä, a3, etc. ne surpasse j,
7. La méthode de Van der et de 4.

Finalement nous traiterons une méthode que M. Vinogradoff
et moi avons trouvée indépendamment l'un de l'autre. Plus
d'un mois après avoir tenu cette conférence, j'ai pour la
première fois appris le nom de M. Vinogradoff et les remarquesfaites dans cet article au sujet des résultats trouvés par lui
ont été ajoutées au texte lors de la correction de la première
épreuve.

Avant de passer à la méthode, je veux indiquer comment
j'y suis arrivé peu à peu par l'étude des méthodes de Voronoï
de Pfeiffer et de Piltz.

Comme nous l'avons déjà dit à propos des méthodes de Diri-
chlet et de Piltz, nous n'avons dans le problème des diviseurs à
nous occuper que de la somme

2
i V*

h entier

*(j

De même dans le problème du cercle nous n'avons à considérer
que la somme

2 V* — h2)

1 \x
h entier

1 G'ôtt. Nachr. (1912), p. 728.
2 C. R., 154 (1912), p. 263-266.
3 These de doctorat (1919), Leiden; Math. Ann., 81 (1920), p. 1-20; Math. Zs 10 Cl92n
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