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268 ' A. BUHL

réels'. Ainsi comprise ’analyse axiomatique cherche a substituer
aux notions intuitives et expérimentales, scuvent confuses, des
idées claires et distinctes. Par 1a elle se trouve prolonger non
sealement la méthode de Descartes, mais aussi celle de la science
grecque. Dés lors la conclusion suivante semble s’imposer:

En méme temps qu’elle retourne aux données immédiates de
Pexpérience sensible, la physique de la relativité cherche a les
axiomatiser et ¢’est pourquoi elle se rencontre avec les tendances
a la fois réaliste et logique des penseurs grecs de I’antiquité.

LA PEDAGOGIE DES THEORIES D’EINSTEIN

PAR

A. BunL (Toulouse).

L’Enseignement mathématique n’ayant publié jusqu’ici qu’un
excellent mais unique article sur les théories relativistes, celui
de M. T. Levi-Crvita (t. XXI, 1920, pp. 5-28), il m’est venu a
I'idée de faire, & mon tour, un exposé, trés bref et purement
pédagogique, répondant d’abord a la préoccupation suivante:
Comment un professeur d’ Analyse infinitésimale ou de Mécanique
rationnelle peut-il, sans changer essentiellement son cours et en un
petit nombre de legons, exposer la Gravifique einsteinienne ?

Cette préoccupation me parait devoir exister surtout en
France ou les cours de Physique mathématique n’abondent pas
et ou un professeur, surtout dans les Facultés de province, ne
se sent pas toujours absolument libre d’enseigner & sa fantaisie
et selon ses travaux personnels.

Parmi les causes qui m’ont amené & enseigner les théories
nouvelles, Je dois faire une place importante a la simple curiosité
des éléves. Et je ne parle pas seulement des miens. Dans I’en-
seignement secondaire, des collégues ont été aussi harcelés de

1 Revue de Métaphysique et de Morale. Le théoréme de Pythagore, p. 23, année 1923.
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questions, souvent sous la pression des parents qui, & force de
rencontrer Einstein dans la presse quotidienne, engageaient leur
fils a rapporter des éclaircissements du College ou du Lycée.
Bien des professeurs ont été embarrassés et, comme ma mission
est surtout de former des professeurs, j’ai entrepris d’éclairer
les candidats au professorat.

Je crois Pavoir fait en donnant Pimpression de la facilité.

Un point de vue, qui me semble trés élémentaire, consiste a
rattacher 1’électromagnétisme et la gravifique aux principes
mémes de I’Analyse, aux formes différentielles, aux déterminants
fonctionnels, bref & toutes ces choses qui naissent immédiate-
ment deés que 'on tente de transformer des intégrales. Un cours
classique dans lequel on introduit la Physique mathématique,
sous de telles espéces, n’en est pas plus altéré que celui de
M. E. Picarp par les développements concernant le potentiel
newtonien ou que celuide M. P. AppELL parle chapitre concernant
les formules de Stokes et de Green.

Irais-je jusqu’a laisser croire que je m’imagine que l'exposé
qui suit doit étre considéré comme un modele ? Nullement !
Nous croyons, au contraire, M. Fehr et moi, que cet article doit
jouer surtout un réle d’amorce et en appeler d’autres, autant
que possible dans les mémes conditions de briéveté, articles &
provenir de collegues qui se seront également trouvés dans les
conditions ci-dessus indiquées et dont les expériences personnelles,
en s’ajoutant, conduiront a de nouveaux exposés de plus en
plus simples et intéressants.

Disons aussi que nous accueillerons avec plaisir les auteurs qui,
sans faire un exposé général, nous enverrons des remarques ou
notes qui pourront étre insérées dans la Chronique ou la Corres-
pondance de la Revue.

I. —IDENTITES ET FORMULES STOKIENNES FONDAMENTALES.

Les 1dentités fondamentales dont il s’agit peuvent étre consi-

dérées comme exprimant des principes fondamentaux du Calcul
intégral; ce sont

XdY = [ [dxdy , XdYdZ =
f d f[ X dY 'ff\d‘{dl ff;/”d\dnﬁ (1)
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Par des changements de variables et des combinaisons linéaires
des nouvelles identités obtenues, on obtient des formules qui
généralisent la formule de Stokes ordinaire, qui existent dans
~tous les hyperespaces et que Je désigne sous la dénomination
générale de formules stokiennes. La premiére identité (1), dans
I'espace E, & quatre dimensions, donne

[3rin = [ [0 2
G A

-

o(xy, x,)

en posant

oF oF oF oF
61'2 0.2“3 0.2"4

0G oG oG oG

Al = b.rl 0x, 07, 0X,
> 0 b d
PI P2 P3 p4 ’

La variété A, d’équations F — 0, G =0, a deux dimensions
dans E,; elle est déformable dans cet espace en conservant
toutefois une frontiére C invariable.

De méme la seconde identité (1) donne, dans E,,

f [ SMydean, = [ [ [Rndndn
S v

dXx4

en posant
oF  aF  oF aFf

0x;  0x, 0x; ox,
0 0 0 0
% =%z om bx x
Miw M:!w M3w Ml}m
1 2 3 4

La variété V, d’équation F = 0, a trois dimensions dans E,;
elle est déformable dans cet espace en conservant toutefois une
frontiére S, & deux dimensions, invariable.
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Le mineur

= My — M;; = 2M,; _

Nous rencontrerons d’autres développements de déterminants
a effectuer de maniére analogue; l'indice w sera dit indice de
substitution. ’
Dans le premier membre de (3), 'assemblage d’indices ij
conduit & siz termes en 12, 13, 14, 23, 24, 34. On a toujours
M. =0.

122

En résumé, nous partons des identités (1) ou bien, ce qui n’est
pas dire plus mais ce qui est plus explicite, de deux formes
différentuelles

YR
~—

2 P dx; , 2 ML.J.dxl. de (

lune linéaire, Uautre bilinéaire. C’est tout ce dont nous avons
besoin, au point de vue des fondements essentiels, pour établir
les formules générales de I’électromagnétisme et de la gravifique.

II. — DERIVEES EN D. — DEPLACEMENTS PARALLELES.
GEODESIQUES.

Fixons notre attention sur les deux derniéres lignes du déter-
minant A,; d’ailleurs ce que nous avons a dire s’appliquerait
tout aussi bien aux mineurs & extraire de la matrice

0 0 0
ox;  dx, oz, 5
p P, ... P {
Soit 1’égalité
_D_ L !_b_ e o '«
Dox; Da; | | ox; dxy || e Jo (6)
P, P, P, P Pe  Pa

Le déterminant en » est 'un des mineurs de (5) ; le dernier
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déterminant, comme on le concevra sans peine, est & développer
en
o %

o o«
ce qui est identiquement nul si
Iy =T5. (7)

Cette hypothése (7) sera toujours maintenue.

Done, dans (6), rien ne généralise le déterminant en 03 mais
cecl n’empéche pas qu’en développant les trois déterminants de
(6) on a, par considération des termes homologues et par défini-
twon, des dérivées, en D, de composantes vectorielles p;,

DP;, P,
b, = oz — To P - (8)

A la formule (6) on peut immédiatement associer

D D 0 0

—_ —_- re re

S 4/ 4 ]
Dz, ij ox; ij | Jx (9)
SO 2 S ) ‘px Jp

d’ou, de méme et par définition, des dérivées, en D, d’auires
composantes P/,

. DP/__ oPJ

Dx. b_.x:

l

+ IV, P* . (10)

Cette fois le dernier déterminant de (9) n’est pas nul ce qui
est une des raisons qui font distinguer les P/ des P,. Mais (10)
va cependant se justifier tout aussi bien que (8).

Formons
.DP. DP/ " . | |
J J  — T ] . — fl J J o .
P D.’I,'L- + PJ ]).I'i _— bxi (P PJ) sz Pa p =f= Fux P PJ

Les deux derniers termes du second membre de cette égalité
se détruisent si « et j sont considérés a la fois comme des indices
de sommation.

Donc les dérivées en D, (8) et (10), sont des dérivées partielles
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généralisées possédant déja au moins deux propriétés essen-
tielles:
10 On n’altére pas la premiére formule stokienne si, dans A,
on remplace les O par des D;
20 On n’altére pas la formule
P, o P/

(P} = B~ .+ F

. (11)
ox, Jdx;

Oxi

si, dans le second membre, on remplace les d par des D.

Bien entendu, il reste acquis, une fois pour toutes, que les «
sont indices de sommation dans les formules (8) et (10) et méme
que tout indice qui figure deux fois dans un méme terme est
indice de sommation.

En (11) apparait pour P/P; une propriété qui est aussi bien
vraie pour P/(Q);, comme on le vérifie immédiatement; de telles
expressions sont des invariants en Caloul tensoriel.

Les équations

DP]- "
D, dx, = de — FL.J.Pu de, = 0 ,
: (12)
DP/ : .
D, .i:dPJ—}-F{.aP‘dxi:O ,

manifestement construites a partir de (8) et (10), sont celles du
déplacement paralléle de Weyl, Levi-Civita, Eddington. On pour-
rait déja songer & préciser la nature des fonctions- T';; mais ce
n’est pas encore indispensable; au contraire, ces fonctions, qui

2
Mf;‘_ﬂ dans E,, c’est-a-dire de 40 dans

E,, tendent a servir de base, actuellement, & une gravifique
généralisée en laquelle il convient de les laisser d’abord indéter-
minées.

Si, dans la seconde équation (12), on imagine que la composante
vectorielle P/ soit le deplaoement infinitésimal dx;, cette équa-
tion devient

sont au nombre de

tx; + 1V, dr,dae, = 0 . (13)

C'est ‘celle des géodésiques. La encore, bien entendu, ce ne
seront Ies géodésiques de variétés géométriques, au sens habituel

L’Enseignement mathém., 23¢ année, 1923. 19
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du mot, que quand les fonctions I" seront convenablement déter-
minées mais il n’en est pas moins fort remarquable que la forme
des équations des géodésiques, la forme des équations du déplace-
ment paralléle, la forme des dérivées en D, sont des formes
contenues implicitement dans la matrice (5), c’est-a-dire, si
Pon veut, dans la notion de tourbillon euclidien ou, ce qui
revient au méme, dans la formule stokienne (2) issue elle-méme
de la premiére identité (1).

ITII. — CHAMP ELECTROMAGNETIQUE GENERAL.

Prenons maintenant la seconde formule stokienne, c’est-a-
dire (3). Il y a deux circonstances, absolument distinctes, qui
rendent nul A, et, par suite, les deux membres de la formule.

1o On n’impose d’abord aucune condition aux M, mais
A, = 0 a lieu par choix de la variété V, c’est-a-dire de la fonec-
tion F qui satisfait alors & une équation aux dérivées partielles,
du premier ordre, linéaire et homogéne. Les équations des
caractéristiques sont

o L. d >
oy T o Mae M = — eV
d d d
~M —M —M,, = V.,
oz, + ox, 1 + oz, 34, #Va, "
0 > o
— M M —M, — — pV_ ,
ox, * + ox, + ox, O,
d 0 d
oz, M T o Ma + My =0
1
en posant
dx dzx dz
V, = —%, ¥ == =, V, = ~-2
"1 dzx, Zy dz, g dz,

et en désignant par p un facteur de proportionnalité.

Les équations (14) constituent le premier groupe des équations
de Maxwell-Lorentz généralisées. Elles correspondent a un E,
qui contient des V, spéciales.

20 On obtient A, = 0 en annulant, dans A,, les mineurs de
la premiere ligne. Alors on a des M,; spéciaux, que nous appel-
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lerons des M;, pour lesquels

0 * 0 * 0 *
——M ——M — — 0 )
bx2 24 + Oxs 42+ bx4 23
0 * I * 0 *
S, e T s T g M,=0,
O Mt M M =0
—6x_‘ 12+a_ 24 + . 4t T ’
4 1 2
0 * 0 * 0 *
o M g Ma T Me = 0
1 e 3

* " _ .
Ces M;; existent évidemment; ils sont de la forme

- 00,

0d.
0P,

*

7 0z

:

o
sz

les @, étant dits potentiels électromagnétiques.

Les équations (15) counstituent le second groupe des équations
de Mazxwell-Lorentz généralisées. Elles expriment que M, dx;dx;

est une différentielle exacte dans E,.

IV. — CuHAMP DE MAXWELL-LORENTZ.

Imaginons que ’on réduise la généralité précédente en posant

M,=d, , M,=—ch,; M'=h_, M = cd

My, =4d,, M,, = — ch, ; M: =h,, M, =cd
# ar ¥

M, = dy , M,, = — ch; ; M31 f— hy“" , M34 —

cd._ .

Alors, en écrivant z, y, z ,t pour z,, &,, &3, x,, et ¢ étant une

constante, les équations (14) deviennent,

oh.  oh 1 od
= Yy - <O‘V + _ﬁ) ,
oy dz ¢ \' & ot |-

doh oh_ od
- 07 _1_<PV + 7/) ,

I

0% or . c Yy ot
oh oh 1 od
i S %
oz ) ¢ (‘OV: T bt) ’
od od od_

T+ A =0
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De méme les équations (15) deviennent

od, Ddy 10h,

TR T

od, od, 1_bh1/

0z ox ¢ ot

(17)

Yy 2% 10k

dx o c ot '

oh b, oh

ox oy 03

Bien que la notation vectorielle n’ait rien d’indispensable, elle
intervient ici commodément pour rassembler les systémes (16)
et (17) sous la forme

1od ' . __ P
rOth_—s+—c—57’ led—-—-P, S-—-:V,
(18)
rotd:-—-lgg, divh — 0 .
c 0Ot

Telles sont les équations de Maxwell-Lorentz qui, & vrai dire,
sont aussi bien celles de Faraday-Ampére.

Des deux derniéres on conclut h = — rot f et
1 of 10f
I‘Ot(d—“c—a>—0, d"-—’c—’b'—t—-V? ,

0 0 0

- : .
520 3y 5n qW S applique & une quan-

si v désigne l'opération
tité o(z, v, z, t) scalaire.
Portant dans la premiére équation (18), on a

1 o%f 1 00

e rof2f — 28 sof — - o
rot*f = — ¢f vdnf_s—}—czmz—{—cvot.
Avec la relation supplémentaire de Mazxwell
100
il reste Péguation vectorielle
' 2
— Vi — 1 L s (20)
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Enfin, la seconde équation (18) donne

: 1 of
d1v<vq>—l—?b—t->:: e

d’ou, d’aprés la relation supplémentaire, Péquation scalare

-6

102 '

2

On voit que 'étude des équations (18) est ramenée a celle de
(19), (20), (21).

Bien entendu
62 + 02
n? = 0s?

62
— = — +
mais, méme si ’on ne connaissait pas cette signification de Vv?,
on la retrouverait aisément en suivant le fil du calcul. 1l en est
de méme pour toutes les notations vectorielles du présent
paragraphe.

V. — OPTIQUE. — RELATIVITE RESTREINTE.

Soit o = 0. Les équations de Maxwell-Lorentz se simplifient.
Le vecteur v, qui correspond a la conductibilité électrique pro-
prement dite, disparait. Il ne reste, dans les seconds membres
de (16), que le fameux courant de déplacement suffisant pour
batir Poptique. Alors les équations (16) et (17) sont vérifiées par

x

dy = h, = acosn(t ——z—> :
tous les autres d et h étant nuls. Cette solution élémentaire
pourrait servir & en construire bien d’autres, & cause du carac-
tere linéaire des équations; toutes ces solutions présenteraient
une méme propriété: celle de ne changer en rien quant ¢ augmente
de T et z de ¢T. Nous sommes donc en présence d’un phénomene
de nature périodique qui se propage avec la vitesse ¢. Cest
I’onde électromagnétique, c’est la lumiére.
Les équations (20) et (21) rentrent dans la forme unique

02U LD2U 22U 1 2?U
ox?t 1 0z2 c? ot T

(22)
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Nous n’aurons plus alors, dans la théorie, que des fonctions U
satisfaisant & cette équation.
Ecrivons la
o*U 22U o?U 2?0

tyr Tttt aE =0

©dxt

Remarquons que
02U 02U 0*U 02U

ot T T ar T
s
}’ P a— xcosl -+ [sinh |,
([ I = — xsinf 4+ [cosh | ]
En posant
tang 0 — ii, [ = ict ' = icl!
e

on conclut définitivement que I'équation (22) et, par suite, toutes
ses solutions U sont conservées par la transformation

— ” :2 . K N ~ o, p— % »
4 .
1 — = 1 — -
(o C

Cest la transformation de Lorentz; elle équivaut, de par (23),
a une rotation imaginaire et, comme toute rotation, engendre
un groupe. On aurait pu I'étudier directement sur les equations
de Maxwell-Lorentz (pour s = 0) sans passer par l’équation
(22) mais comme cette derniére est Iéquation fondamentale de
la théorie ondulatoire il est hautement préférable, dans un
exposé pédagogique, de ne pas se priver de montrer que la
théorie ondulatoire de la lumiére est aussi un cas particulier
des généralités ici invoquées. '

Il n’entre point dans le plan de cet article de discuter longue-
ment les conséquences de la transformation de Lorentz; on ne
I’a‘fait que trop souvent et en embrouillant les choses les plus
simples. | |

Ainsl, pour la contraction de Lorentz, il suffit de remarquer
que s1 I’éloignement de deux observateurs varie avec une certaine
vitesse (ici ¢), ils se voient réciproguement diminués en dimension
aussi bien du fait de la vitesse que du fait de I’éloignement.
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Pour ’éloignement tout le monde admet cela; en quol est-ce
plus étrange pour la vitesse ? Rien de plus suggestif que cet
exact rapprochement entre la perspective ordinaire et la ciné-
matique lorentzienne. ‘

VI. — DgRIVEES EN D D’EXPRESSIONS A DEUX INDICES.

Revenons maintenant & la seconde formule stokienne (3) et
plus particulierement a son déterminant A, quinous a déja
donné le champ électromagnétique général. Il s’agit de lui
faire donner les formules de gravitation proprement dites.

Considérons, dans A,, les mineurs des termes de la premiere
ligne. On ne les altére pas en les écrivant

d d d

ol el -y rg, Tr, e re, I'4, T
\bxi 0x; Oy Lo DJm Tk iw  ©jw kw
M;., Mjw M., M, M. M, ¢ J ok
| : : : : o
ol ] k l J ko My, Mg, Mg,

car les deux derniers déterminants sont identiquement nuls. Bien
entendu on a toujours ’hypothése (7) et les ¢, j, & libres viennent,
dans les développements, prendre la place des w. Remarquons
aussi tout de suite, que les présents raisonnements ne supposent
plus aucune relation entre M, et M.

Convenons maintenant que ’expression précédente, a trois
déterminants, s’écrive

D D D

Uf"i v D,

My Mo M, (24)
L J | k|

La simple identification donne des formules rentrant toutes
dans le type

D d " '
bx, Yk = o, Mk T T My

— F?}Mak i (25)

On peut ensuite étendre les raisonnements du paragraphe II.
Dans (24) et dans I’expression qui précéde (24) relevons partout les
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deux indices des M cependant que, dans les I', on échangera
a et w. ‘
Les déterminants contenant les T seront, de plus, changés de
signe.
On définit ainsi des M/* & dériver par la formule

D . .

. MJk — Jk k apja J ok ) 9

e bxl — W* 4 ¥ W% 4 1, M (26)
Dans ce second cas, les déterminants en I' ne sont pas nuls

mais on achéve de justifier (26) en remarquant que

0 D D >
NE D Mo oM NE = 2wk
D, /% + M Dz, bxi( M

*)

s1], k, « sont indices de sommation.

Enfin reprenons I’égalité de (24) et des trois déterminants qui
précedent (24). Dans (24) et les deux premiers déterminants
des trois autres relevons les indices i, J» k des M, sans toucher
aux I'; dans le dernier déterminant, relevons les « des M, inter-
Vertlssons a et w dans les T et changeons le signe de ce déter-
minant.

On définit ainsi des M} & dériver par la formule

D > . S :
l)—xM] —_EMJIC—FI-,{MJG-I-I‘{“MZ‘. (27)

Celle-ci est finalement construite de telle maniére que

D D 0 ;
N} 5= w + M D—N" xi(N;fM—}() :
Donc les dérivées en D, (25), (26), (27) sont des dérivées par-
tielles généralisées possedant déja au moins deux propriétés
essentielles (Cf. paragraphe II):
10 On n’altére pas la seconde formule stokienne s, dans A,,
on remplace les » par des D
20 Les dérivées partielles de N*M;; et de N; M, s’expriment
en D comme en o,

Remarquons aussi que les formules (25), (26), (27), comme
d’ailleurs (8) et (10), sont indépendantes de considérations
metriques ou mieux qu’elles tendent & engendrer ces considéra-
tions plutét qu’a en naitre. En effet, nos M a deux indices
conduisent maintenant & des M;; qui ne sont plus nuls si bien
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que, de la forme bilinéaire écrite en (4), nait une forme quadra-
tigue. Les coefficients de celle-ci, avec des notations analooues
celles du paragraphe III, pourraient s’appeler des M;;. Pour
nous conformer aux habltudes, nous les appellerons des g; et
la forme quadratique maintenant apparue sera

ds? = gy dx;dx; (28)

= 01_]

C’est d’elle que procédent la géoméirie métrique et la graviation.

Enfin des généralisations peuvent s’apercevoir. Ainsi dans
Pexpression a trois déterminants du début de ce paragraphe,
les fonctions T n’ont pas besoin d'étre les mémes dans les deux
derniers déterminants. 1l est fort intéressant de rechercher ce qui
peut se conserver des résultats subséquents quand ces I' di-
ferent. Mais c’est encore une chose qui sortirait des limites de
cet exposé pédagogique (Cf. Annales de Toulouse, 3¢ Mémoire).

Remarquons encore que la théorie des dérivations en D n’est
quun prolongement de celle des déterminants.

VII. — SYMBOLES A QUATRE INDICES.

Jusqu’ici la dérivation en D semble avoir été instituée pour
conserver des formules en o. Elle ne peut cependant les conserver
toutes, sous peine de ne pas étre une véritable généralisation.
Parmi les choses qu’elle ne conserve pas, il faut signaler, en
tout premier lieu, l'interversion des dérivations.

Ainsi traitant les dérivées en D, (8) et (10), comme les expres-
sions & deux indices du paragraphe précédent, il vient, apres
des calculs simples et quelques permutations d’indices,

D D
Dxi ij
e P BE (29)
k []
DP, D_Pk Ji
Dxi l)xj
D D
Dxi Dx.
J o nk
DPF DPF| P By 130)
Dxi D:x:j
0
b = T — -—1““ - I‘B rB e . (31)

A
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VIII. — METRIQUE. COURBURE. GRAVITATION.
Maintenant que nous avons constaté que la dérivation d’expres-
sions & deux indices conduisait A percevoir l'existence d’une
forme quadratique (28), il reste a s’expliquer sur les coefficients
gy de celle-ci et sur le choix des fonctions T Jusqu’ici compléte-
ment indéterminées. C'est 14 que peuvent intervenir diverses
hypotheses auxquelles correspondent diverses théories gravifiques.
L’hypothese la plus simple, & laquelle correspond la géométrie
de Riemann, consiste 4 admettre que toutes les dérivées en D
des g;; sont nulles. Ceci entraine, d’aprés les formules du para-
graphe VI, que des g7 et des g’ ont également leurs dérivées
en D identiquement nulles, si g¥ est le quotient par g du mineur
de g; dans le déterminant g des g; et si
e 0, si i

o _— o ) —

o oaj*" 1’

(32)

si 1 =
Rappelons que I’équation

D 0

o —_ o . 'X\ — o o
“D“‘xioj/f = Oz, jn — gL gan Ty = 0,

ou bien

) Lk i]

— & — | . |— =0
donne

g i _ 0%n L 08 . 08 ‘.

s oa; 0x ; oxy,
On a ainsi

Les B & quatre indices exprimés en (31) sont alors les com-
posantes de la courbure riemannienne, courbure dont la théorie
pourrait étre ici esquissée rapidement. Allons plus directement
au but en utilisant 'opérateur (32) qui, aux B a quatre indices,
fera correspondre des G a deux indices seulement (contraction;
Verjiingung), soit

— Rk
Gai — r’jBuij .
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Ces G sont encore des composantes de courbure, ce que, par
exemple, on peut vérifier aisément dans le cas d’une surface
ordinaire sur laquelle on aurait

ds? = g, da* + 2g,, do, day + g dat .

- 011

Alors g% Gy, correspond a la courbure totale de la surface.

Pour revenir au cas général, lessentiel est que l'on tient
maintenant des G,; et des g,; qui sont en méme nombre (10 dans
EQ, ]‘equatlon‘ 6. —o 55
qui est la plus simple des lois de gravitation, exprime un mode
de courbure de l'espace-temps qui est vraisemblablement le
plus simple. Cette équation permet la détermination des g,
c’est-a-dire d’'un ds? auquel correspondent des géodésiques-
trajectoires, etc.

Nous n’irons pas plus loin dans cette voie car ’exposition
que nous aurions & faire pour continuer ne différerait pas de
celles déja faites par maints auteurs.

Terminons par quelques remarques analyulques

Pour arriver & (33), il vaut mieux passer par (30) que par (29)
En effet, former les G & partir de (29) ¢’est faire, dans le second
membre « = ¢, opération impossible & indiquer sur le premier
membre qui ne porte pas explicitement I'indice «. Il en est
autrement, avec (30), pour k& = j et 'on pourrait méme énoncer
la loi de gravitation (33) sous cette forme: les expressions

| D D
Dr, Da, !
J
DP/  DPp!
Da p ij

sont nulles, quel que soit le vecteur P. Sous cette physionomie, on
voit combien la loi est proche des formules stokiennes fonda-
mentales qui ont également servi de base a I’électromagnétisme.

Soyons également tres bref sur les déja nombreuses extensions
des théories einsteiniennes. Ainsi A.-S. Eddington ( Math. Theory,

p. 217) pose
D

l)r ik = QI\

"4
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en faisant naitre cette formule de considérations métriques
inutiles & invoquer ici comme base.

Si K, .= 1 %0 O retrouve la métrique de Weyl; pour
#;, nul celle de Riemann.
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ainsi que toute une théorie précisée dans le second et définitive-
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ment mise au point en des Premiers Compléments (1922). Voir
analyse dans L’Enseign. math. (1920, p. 237).

P. Dienes. Sur la structure mathématique du Calcul tensoriel
(« Journal de Mathématiques pures et appliquées », 1924). Ce
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A.-S. Eppingron. 10 Espace, Temps, Gravitation (J. Hermann,
Paris, 1921). 20 The mathematical Theory of Relativity (Cam-
bridge University Press, 1923). A ces deux ouvrages on peut
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la loi de gravitation (33). Voir analyse dans L’Enseign. math.
(1921-22, p. 86).

E. Goursat. Legons sur le probléme de Pfaff. (J. Hermann,
Paris, 1922). Mémes remarques que pour l'ouvrage de M. E.
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(1921-22, p. 316).

R. LEVEUGLE. Précis de Calcul géométrique. (Gauthier-Villars,
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graphe IV. Voir analyse dans L’ Enseign. math. (1920, p. 238).

T. Levi-Civita. 10 Comment un conservateur pourrait-il arriver
au seutl de la Mécanique nouvelle ? (« L’Enseign. math. », 1920).
20 Nozione di parallelismo in una varietd qualunque e conseguente

spectficazione geometrica della curvatura riemanniana (Rendi-
conti, Palermo, 1917).

H.-A. Lorentz. The theory of Elecirons and its applications
to the phenomena of Light and radiant Heat. (G.-E. Stechert,
New-York; B.-G. Teubner, Leipzig, 1916). Exposé magnifique
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des équations de Maxwell-Lorentz.
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Sorbonne en 1888, 1890 et 1899. (Gauthier-Villars,Paris). Ces
lecons sont des plus suggestives au point de vue de I’histoire de
la Science. Elles montrent qu’en 1889, Henri Poincaré en était
déja & Penseignement classique du temps local (p. 530) et de la
coniraction de Lorentz (p. 536). Ces conceptions ont donc pré-
cédé de beaucoup les théories einsteiniennes proprement dites,
contrairement & ce que semblent croire de nombreuses personnes.
Voir analyse dans L’ Enseign. math. (1902, p. 307).

C. SOMIGLIANA. ] fondamenti della Relativita («Scientia », juil-
let 1923). D’aprés cet article, la transformation de Lorentz
remonterait & 1887, époque ou Woldemar Vcigt ’apercut dans
le domaine de D’élasticité. Dans cet ordre d’idées, étant donné
que la transformation n’est qu'une interprétation trés simple
d’une rotation, il est probable qu’on pourrait lui trouver des
origines encore beaucoup plus lointaines.

H. WEYL. Raum, Zeit, Materie (Vierte Auflage, J. Springer,
Berlin, 1921) ou Espace, Temps, Matiére (A. Blanchard, Paris,
1922). Cet ouvrage expose une géométrie affine en connexion
profonde avec la théorie des groupes. Il suscite de grands mou-
vements d’idées qui, en France, semblent surtout se réfléter dans
les travaux actuels de M. E. Cartan. Voir analyse dans L’ Enseign.
math. (1921-22, p. 235). |

NOTE

Dans larticle de M. Arnold Reymond, qui précéde celui—ci, il m’est
agréable de voir présenter la théorie relativiste comme une axiomatique
qui peut «élaborer le groupe d’axiomes nécessaires et suffisant a Pexpli-
cation des phénomenes réels» (pp. 267-268).

En effet, dans mon premier Mémoire des Annales de la Facullé des
Sciences de Toulouse (1920, p. 1), j’écrivais textuellement : Les temps
sont proches — ¢’ils ne sont déja révolus — ou I'on posera les conditions
analytiques, nécessaires et suffisantes, pour que les phénomenes physiques

puissent étre concus.
A B.
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