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268 A. BUHL
réels1. Ainsi comprise l'analyse axiomatique cherche à substituer
aux notions intuitives et expérimentales, souvent confuses, des
idées claires et distinctes. Par là elle se trouve prolonger non
seulement la méthode de Descartes, mais aussi celle de la science
grecque. Dès lors la conclusion suivante semble s'imposer:

En même temps qu'elle retourne aux données immédiates de
l'expérience sensible, la physique de la relativité cherche à les
axiomatiser et c'est pourquoi elle se rencontre avec les tendances
à la fois réaliste et logique des penseurs grecs de l'antiquité.

LA PÉDAGOGIE DES THÉORIES D'EINSTEIN

PAR

A. Buhl (Toulouse).

Y?Enseignement mathématique n'ayant publié jusqu'ici qu'un
excellent mais unique article sur les théories relativistes, celui
de M. T. Levi-Civita (t. XXI, 1920, pp. 5-28), il m'est venu à
l'idée de faire, à mon tour, un exposé, très bref et purement
pédagogique, répondant d'abord à la préoccupation suivante:

Comment un professeur d'Analyse infinitésimale ou de Mécanique
rationnelle peut-il,sans changer essentiellement son cours et en un
petit nombre de leçons,exposer la Gravifique einsteinienne

Cette préoccupation me paraît devoir exister surtout en
France où les cours de Physique mathématique n'abondent pas
et où un professeur, surtout dans les Facultés de province, ne
se sent pas toujours absolument libre d'enseigner à sa fantaisie
et selon ses travaux personnels.

Parmi les causes qui m'ont amené à enseigner les théories
nouvelles, je dois faire une place importante à la simple curiosité
des élèves. Et je ne parle pas seulement des miens. Dans
l'enseignement secondaire, des collègues ont été aussi harcelés de

1 Revue de Métaphysique et de Morale. Le théorème de Pythagore, p. 23, année 1923.
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questions, souvent sous la pression des parents qui, à force de

rencontrer Einstein dans la presse quotidienne, engageaient leur

fils à rapporter des éclaircissements du Collège ou du Lycée.

Bien des professeurs ont été embarrassés et, comme ma mission

est surtout de former des professeurs, j'ai entrepris d'éclairer
les candidats au professorat.

Je crois l'avoir fait en donnant l'impression de la facilité.
Un point de vue, qui me semble très élémentaire, consiste à

rattacher l'électromagnétisme et la gravifique aux principes
mêmes de l'Analysa, aux formes différentielles, aux déterminants

fonctionnels, bref à toutes ces choses qui naissent immédiatement

dès que l'on tente de transformer des intégrales. Un cours

classique dans lequel on introduit la Physique mathématique,
sous de telles espèces, n'en est pas plus altéré que celui de

M. E. Picard par les développements concernant le potentiel
newtonien ou que celui de M. P. Appell parle chapitre concernant
les formules de Stokes et de Green.

Irais-je jusqu'à laisser croire que je m'imagine que l'exposé
qui suit doit être considéré comme un modèle Nullement
Nous croyons, au contraire, M. Fehr et moi, que cet article doit
jouer surtout un rôle d'amorce et en appeler d'autres, autant
que possible dans les mêmes conditions de brièveté, articles à

provenir de collègues qui se seront également trouvés dans les

conditions ci-dessus indiquées et dont les expériences personnelles,
en s'ajoutant, conduiront à de nouveaux exposés de plus en

plus simples et intéressants.
Disons aussi que nous accueillerons avec plaisir les auteurs qui,

sans faire un exposé général, nous enverrons des remarques ou
notes qui pourront être insérées dans la Chronique ou la
Correspondance de la Reçue.

I. — Identités et Formules stokiennes fondamentales.

Les identités fondamentales dont il s'agit peuvent être
considérées comme exprimant des principes fondamentaux du Calcul
intégral; ce sont

JxdXf ÇdXdY ,ff dXdYdZ (1)
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Par des changements de variables et des combinaisons linéaires

des nouvelles identités obtenues, on obtient des formules qui
généralisent la formule de Stokes ordinaire, qui existent dans
tous les hyperespaces et que je désigne sous la dénomination
générale de formules stokiennes. La première identité (1), dans
1 espace E4 à quatre dimensions, donne

en posant

P(. dxt: — //T'
[ dx0

(F. G)
A

b\('Y3 i *4)

ôF ôF ôF ôF
ö arl b ,r2 ÔJ;! ùx4

bG ÖG ôG ôG
Ö .L'g bx3 àx4

ö Ö ö b

ô X2 bx3 êaA

Pt P2 P3 p4
1

(2)

La variété A, d'équations F 0, G 0, a deux dimensions
dans E4 ; elle est déformable dans cet espace en conservant
toutefois une frontière G invariable.

De même la seconde identité (1) donne, dans E4,

(3,
S V

Ö ÛCi

en posant
ôF öF ôF ôF

d.r2 dx3 bx4

Ö ö

b X2

Ö

ÖX3

b

bx4

M1W M.,
2<JJ M3« M,,..,

1 2 3 4

La variété V, d'équation F 0, a trois dimensions dans E4;
elle est déformable dans cet espace en conservant toutefois une
frontière S, à deux dimensions, invariable.
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Le mineur

My - M_,, 2M..

Nous rencontrerons d'autres développements de déterminants
à effectuer de manière analogue; l'indice co sera dit indice de

substitution.
Dans le premier membre de (3), l'assemblage d'indices ij

conduit à six termes en 12, 13, 14, 23, 24, 34. On a toujours

M.. 0

En résumé, nous partons des identités (1) ou bien, ce qui n'est
pas dire plus mais ce qui est plus explicite, de deux formes
différentielles

Vune linéaire, Vautre bilinéaire. C'est tout ce dont nous avons
besoin, au point de vue des fondements essentiels, pour établir
les formules générales de l'électromagnétisme et de la gravifique.

II. — Dérivées en D. — Déplacements parallèles.
Géodésiques.

Fixons notre attention sur les deux dernières lignes du
déterminant At; d'ailleurs ce que nous avons à dire s'appliquerait
tout aussi bien aux mineurs à extraire de la matrice

5

ÔJCj

Ö

öo:2

Ö

p. P2 • •• p„
(5)

Soit l'égalité

D

'V
D

DXj

ö

0xi

Ö

à.Xj
r"o

Pi p. pi P.
J <pa A

(G

Le déterminant en a est l'un des mineurs de (5) ; le dernier
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déterminant, comme on le concevra sans peine, est à développer
en

r?.p — r? py « « '

ce qui est identiquement nul si

p« paij — Lji (7)

Cette hypothèse (7) sera toujours maintenue.
Donc, dans (6), rien-ne généralise le déterminant en a; mais

ceci n empêche pas qu'en développant les trois déterminants de
(6) on a, par considération des termes homologues et par définition,

des dérivées, en D, de composantes vectorielles P),

DP. öP,
L ± pa p

Dx, bx. Ö « * (8)

A la formule (6) on peut immédiatement associer

D

Dx^

D

DXj

ö

bx.
5

bXj +
p c*>
1 iOL p w

ya
(9)

P' P7' P1' P7 ip« ypa

d'où, de même et par définition, des dérivées, en D, d'autres
composantes P7,

DP-/ öP7
— -i- r7 pa

DJ. (10)

Cette fois le dernier déterminant de (9) n'est pas nul ce qui
est une des raisons qui font distinguer les P7 des P,-. Mais (10)
va cependant se justifier tout aussi bien que (8).

Formons

.DP. DP7 b
P7 J- 4- P — (P7 P O F? P P7 4- F7 Pa P

Dj,. ^ J Dx. bx.
1 J' 1

y" a + 1 p V *

Les deux derniers termes du second membre de cette égalité
se détruisent sia et j sont considérés à la fois comme des indices
de sommation.

Donc les dérivées en D, (8) et (10), sont des dérivées partielles
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généralisées possédant déjà au moins deux propriétés essen-

tielies :

1° On n'altère pas la première formule stokienne si, dans A17

on remplace les ö par des D ;

2° On n'altère pas la formule

JL(p/p.) — + P (A1)

àxé
V J J ÙXé

si, dans le second membre, on remplace les 0 par des D.

Bien entendu, il reste acquis, une fois pour toutes, que les a

sont indices de sommation dans les formules (8) et (10) et même

que tout indice qui figure deux fois dans un même terme est

indice de sommation.
En (11) apparaît pour P/P) une propriété qui est aussi bien

vraie pour P-fQj, comme on le vérifie immédiatement; de telles

expressions sont des invariants en Calcul tensoriel.

Les équations

dPj — rfjVudxé 0

(12)

Ld*i dpi+riittvadxi=o

manifestement construites à partir de (8) et (10), sont celles du

déplacement parallèle de Weyl, Levi-Civita, Eddington.^ On pourrait

déjà songer à préciser la nature des fonctions T# mais ce

n'est pas encore indispensable; au contraire, ces fonctions, qui

sont au nombre de n ^ dans E„, c'est-à-dire de 40 dans

E4, tendent à servir de base, actuellement, à une gravifique
généralisée en laquelle il convient de les laisser d'abord indéterminées.

Si, dans la seconde équation (12), on imagine que la composante
vectorielle Pi soit le déplacement infinitésimal dxj, cette équation

devient
d2Xj + tJ(xidxadxi 0 (13)

C'est celle des géodésiques. Là encore, bien entendu, ce ne
seront les géodésiques de variétés géométriques, au sens habituel

L'Enseignement mathém., 23® année, 1923. 19
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du mot, que quand les fonctions r seront convenablement
déterminées mais il n'en est pas moins fort remarquable que la forme
des équations des géodésiques, la forme des équations du déplacement

parallèle, la forme des dérivées en D, sont des formes
contenues implicitement dans la matrice (5), c'est-à-dire, si
l'on veut, dans la notion de tourbillon euclidien ou, ce qui
revient au même, dans la formule stokienne (2) issue elle-même
de la première identité (1).

III. — Champ électromagnétique général.

Prenons maintenant la seconde formule stokienne, c'est-à-
dire (3). Il y a deux circonstances, absolument distinctes, qui
rendent nul A2 et, par suite, les deux membres de la formule.

1° On n'impose d'abord aucune condition aux Mi;- mais
A2 0 a lieu par choix de la variété V, c'est-à-dire de la fonction

F qui satisfait alors à une équation aux dérivées partielles,
du premier ordre, linéaire et homogène. Les équations des

caractéristiques sont

+ + — M
23 - -

+ — M34
Ö«!

34

4m'2 + 4M" + — M41

^-M23 +
öiCj

23 — M„
öz2

+ — M12
àXg

12 p

dx. \T dx2 y ^^3I1^5IIs" X1 dx4 xz dx±

(14)

en posant

et en désignant par p un facteur de proportionnalité.
Les équations (14) constituent le premier groupe des équations

de Maxwell-Lorentz généralisées. Elles correspondent à un E4

qui contient des V3 spéciales.
2° On obtient A5 0 en annulant, dans A27 les mineurs de

la première ligne. Alors on a des M# spéciaux, que nous appel-
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lerons des M,*-, pour lesquels

JLM* + —M* + —M* 0
hx2 34 àx3 42 Ö£4 23

+ —M* + — M* 0
41 ö£4 13 dXj 34

É—M
* +1m'+-M* 0

ôa:4 12 i>xt 24 öz3 41

i-M* + — M* + — M* 0
dse, 23 ül

(15)

Ces Mj* existent évidemment; ils sont de la forme

5$,. ô4\-
M.. —lJ ÛX- ÜXf

1

les <5>i étant dits potentiels électromagnétiques.
Les équations (15) constituent le second groupe des équations

de Maxwell-Lorentz généralisées. Elles expriment que Mijdxidxj
est une différentielle exacte dans E4.

IV. — Champ de Maxwell-Lorentz;.

Imaginons que l'on réduise la généralité précédente en posant

M12 tL M14 - chx ; m; h, M* c*x

M23 dx M24 - chy ; M* h, < cày

M31 dy M34 -chz ; hy„. M* cdz

Alors, en écrivant x. y, z ,t pour xn x2, x3, x4l et c étant une
constante, les équations (14) deviennent
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De même les équations (15) deviennent

hdz hdy 1 6hx
hjT hz

~~~
C Ö«

1

cv P-

1
H & P-

1
1 ö ht/

hz OX c ht

H/ _
1 dh.

hx ÖJ c ht

ôhX ôhv
77 + V +

öh,
~hz

:
0

(17)

Bien que la notation vectorielle n'ait rien d'indispensable, elle
intervient ici commodément pour rassembler les systèmes (16)
et (17) sous la forme

.i- 1 ôd prot h — S -| div d — p s — —V
c ht r c

^ „
(18)

rot d div h — 0
c ht

Telles sont les équations de Maxwell-Lorentz qui, à vrai dire,
sont aussi bien celles de Faraday-Ampère.

Des deux dernières on conclut h — rot f et

rot d — 1— y,V c ht/ C ht vr

si V désigne l'opération^, ^ qui s'applique à une quantité

<f(x, y, z, t) scalaire.
Portant dans la première équation (18), on a

.2* 9£ i • a ,1 d2f 1 Ö CD-rotM -Vf-Vd,vf » + -,_ +-V-,.
Avec la relation supplémentaire de Maxwell

i. » -
1 ô CD

dlvf + 7ô7=0' (19>

il reste Véquation vectorielle

»«
1 ö2f-vf-7^ s- <2°)
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Enfin, la seconde équation (18) donne

d'où, d'après la relation supplémentaire, Véquation scalaire

On voit que l'étude des équations (18) est ramenée à celle de

(19), (20), (21).
Bien entendu

mais, même si l'on ne connaissait pas cette signification de va>

on la retrouverait aisément en suivant le fil du calcul. Il en est

de même pour toutes les notations vectorielles du présent

paragraphe.

Soit p 0. Les équations de Maxwell-Lorentz se simplifient.
Le vecteur v, qui correspond à la conductibilité électrique

proprement dite, disparaît. Il ne reste, dans les seconds membres

de (16), que le fameux courant de déplacement suffisant pour
bâtir l'optique. Alors les équations (16) et (17) sont vérifiées par

tous les autres d et h étant nuls. Cette solution élémentaire

pourrait servir à en construire bien d'autres, à cause du caractère

linéaire des équations; toutes ces solutions présenteraient

une même propriété: celle de ne changer en rien quant t augmente
de T et x de cT. Nous sommes donc en présence d'un phénomène
de nature périodique qui se propage avec la vitesse c. C'est

l'onde électromagnétique, c'est la lumière.
Les équations (20) et (21) rentrent dans la forme, unique

y. Optique. — Relativité restreinte.
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Nous n'aurons plus alors, dans la théorie, que des fonctions U

satisfaisant à cette équation.
Ecrivons la

öhj öhj è2û_
Ö.T2 by2 dz2 ~ö/*~ ~~ 0 '

Remarquons que

si

En posant

Ö2U
__

Ö2U Ö2U
ö.r2 + dl2 ~ bx'2 ~bï2

j x' ~ x cos 0 -j- Z sin 6

^ — .r sin 0 / cos 6 (28)

tangö i~ / ;c/ t // _ ie//
^

on conclut définitivement que l'équation (22) et, par suite, toutes
ses solutions U sont conservées par la transformation

X Vt t 02 X
y' j — - " 6

0-5' 0-5'
C est la transformation de Lorentelle équivaut, de par (23),

à une rotation imaginaire et, comme toute rotation, engendre
un groupe. On aurait pu l'étudier directement sur les équations
de MaxwelKLorentz (pour p 0) sans passer par l'équation
(22) mais comme cette dernière est l'équation fondamentale de
la théorie ondulatoire il est hautement préférable, dans un
exposé pédagogique, de ne pas se priver de montrer que la
théorie ondulatoire de la lumière est aussi un cas particulier
des généralités ici invoquées.

Il n'entre point dans le plan de cet article de discuter longuement
les conséquences de la transformation de Lorentz; on ne

l'a fait que trop souvent et en embrouillant les choses les plus
simples.

Ainsi, pour la contraction de il suffit de remarquer
que si l'éloignement de deux observateurs varie avec une certaine
vitesse (ici c), ils se voient réciproquement diminués en dimension
aussi bien du fait de la vitesse que du fait de l'éloignement.



PÉDAGOGIE DES THÉORIES D'EINSTEIN 279

Pour l'éloignement tout le monde admet cela; en quoi est-ce

plus étrange pour la vitesse Rien de plus suggestif que cet

exact rapprochement entre la perspective ordinaire et la

cinématique lorentzienne.

VI. Dérivées en D d'expressions a deux indices.

Revenons maintenant à la seconde formule stokienne (3) et

plus particulièrement à son déterminant qui nous a déjà

donné le champ électromagnétique général. Il s agit de lui
faire donner les formules de gravitation proprement dites.

Considérons, dans A2, les mineurs des termes de la première

ligne. On ne les altère pas en les écrivant

Ö

bX;

b~ Ï>

hxk
Cf., F?,

J'*»• n, raL tw
FaLjf» FaJ kco

M,, M*« M*« Mj-, ^k, i j k

i i k i i k Ma, M
07

car les deux derniers déterminants sont identiquement nuls. Bien

entendu on a toujours l'hypothèse (7) et les î, /, k libres viennent,
dans les développements, prendre la place des oo. Remarquons
aussi tout de suite, que les présents raisonnements ne supposent

plus aucune relation entre M;y et Mß.

Convenons maintenant que l'expression précédente, à trois

déterminants, s'écrive

D 1) D

DXj

M.
./*>

7kTk

M,-«
(24)

i j k

La simple identification donne des formules rentrant toutes
dans le type

— Mik — m/aDx. H bX; Jk TfkMju — hyMait • (25)

On peut ensuite étendre les raisonnements du paragraphe II.
Dans (24) et dans l'expression qui précède (24) relevons partout les
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deux indices des M cependant que, dans les T, on échangera
a et w.

Les déterminants contenant les r seront, de plus, changés de
signe.

On définit ainsi des à dériver par la formule

MJ'k — — M.ik r* MJ(* 4. rJ. Mak tie>\ -
L>x. öa;. ' lioLiyi i 1 «aiV1 •

* i

Dans ce second cas, les déterminants en r ne sont pas nuls
mais on achève de justifier (26) en remarquant que

«"-è;"» + tj'-L,""
si j, k,« sont indices de sommation.

Enfin reprenons 1 égalité de (24) et des trois déterminants qui
précèdent (24). Dans (24) et les deux premiers déterminants
des trois autres relevons les indices k des M, sans toucher
aux T ; dans le dernier déterminant, relevons les « des M,
intervertissons a et w dans les r et changeons le signe de ce
déterminant.

On définit ainsi des Mi à dériver par la formule

^M*~ r<* < + Mf • (27)

Celle-ci est finalement construite de telle manière que

•

Donc les dérivées en D, (25), (26), (27) sont des dérivées
partielles généralisées possédant déjà au moins deux propriétés
essentielles (Cf. paragraphe II):

1° On n'altère pas la seconde formule stokienne si, dans A2,
on remplace les a par des D;

2° Les dérivées partielles de Wk et de Ny MÎ s'expriment
en D comme en a.

Remarquons aussi que les formules (25), (26), (27), comme
d ailleurs (8) et (10), sont indépendantes de considérations
métriques ou mieux qu'elles tendent à engendrer ces considérations

plutôt qu'à en naître. En effet, nos M à deux indices
conduisent maintenant à des Mw qui ne sont plus nuls si bien
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que, de la forme bilinéaire écrite en (4), naît une forme quadratique.

Les coefficients de celle-ci, avec des notations analogues à

celles du paragraphe III, pourraient s'appeler des Miy. Pour

nous conformer aux habitudes, nous les appellerons des gij et

la forme quadratique maintenant apparue sera

C'est d'elle que procèdent la géométrie métrique et la gravitation.
Enfin des généralisations peuvent s'apercevoir. Ainsi dans

l'expression à trois déterminants du début de ce paragraphe,
les fonctions T n'ont pas besoin d'être les mêmes dans les deux

derniers déterminants. Il est fort intéressant de rechercher ce qui
peut se conserver des résultats subséquents quand ces T di-
fèrent. Mais c'est encore une chose qui sortirait des limites de

cet exposé pédagogique (Cf. Annales de Toulouse, 3e Mémoire).
Remarquons encore que la théorie des dérivations en D n'est

qu'un prolongement de celle des déterminants.

Jusqu'ici la dérivation en D semble avoir été instituée pour
conserver des formules en a. Elle ne peut cependant les conserver
toutes, sous peine de ne pas être une véritable généralisation.
Parmi les choses qu'elle ne conserve pas, il faut signaler, en

tout premier lieu, l'interversion des dérivations.
Ainsi traitant les dérivées en D, (8) et (10), comme les expressions

à deux indices du paragraphe précédent, il vient, après
des calculs simples et quelques permutations d'indices,

gijdxidxj (28)

VII. — Symboles a quatre indices.

D D

DXl Dxj

Mxt i)Xj

(29)

130)

(31)
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VIII. — Métrique. Courbure. Gravitation.

Maintenant que nous avons constaté que la dérivation d'expressions
à deux indices conduisait à percevoir l'existence d'une

forme quadratique (28), il reste à s'expliquer sur les coefficients
gij de celle-ci et sur le choix des fonctions r jusqu'ici complètement

indéterminées. C'est là que peuvent intervenir diverses
hypothèses auxquelles correspondent diverses théories gravifiques.

L hypothèse la plus simple, à laquelle correspond la géométrie
de Riemann, consiste à admettre que toutes les dérivées en D
des gij sont nulles. Ceci entraîne, d'après les formules du
paragraphe VI, que des gv et des g\ ont également leurs dérivées
en D identiquement nulles, si gij est le quotient par g du mineur
de gij dans le déterminant g des g£J et si

J ai 0 si i jSj-Z &aj ~ | si iJy (32)

Rappelons que l'équation

D
__

ö

Dr. ,~ö~r. °jh ~ *ja^ik oak^ij ~ ° '

ou bien

donne

Ö

"öV- *Jk m - m= o

>['!>%
On a ainsi

_ | djji
bXj bxk

Les B à quatre indices exprimés en (31) sont alors les
composantes de la courbure riemannienne, courbure dont la théorie
pourrait être ici esquissée rapidement. Allons plus directement
au but en utilisant l'opérateur (32) qui, aux B à quatre indices,
fera correspondre des G à deux indices seulement (contraction;
Verjüngung), soit

fl k ufo
«<• ~
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Ces G sont encore des composantes de courbure, ce que, par
exemple, on peut vérifier aisément dans le cas d'une surface

ordinaire sur laquelle on aurait

ds2 gn da[ -f 2 gl2 d.x\ dx2 + g22 dx\

Alors gai correspond à la courbure totale de la surface.

Pour revenir au cas général, l'essentiel est que l'on tient
maintenant des G7i- et des g,/t qui sont en même nombre (10 dans

E4) ; l'équation
Gvi 0 (33)

qui est la plus simple des lois de gravitation, exprime un mode
de courbure de l'espace-temps qui est vraisemblablement le

plus simple. Cette équation permet la détermination des gah
c'est-à-dire d'un ds2 auquel correspondent des géodésiques-
trajectoires, etc.

Nous n'irons pas plus loin dans cette voie car l'exposition
que nous aurions à faire pour continuer ne différerait pas de

celles déjà faites par maints auteurs.
Terminons par quelques remarques analytiques.
Pour arriver à (33), il vaut mieux passer par (30) que par (29).

En effet, former les G à partir de (29) c'est faire, dans le second
membre a i, opération impossible à indiquer sur le premier
membre qui ne porte pas explicitement l'indice a. Il en est
autrement, avec (30), pour k j et l'on pourrait même énoncer
la loi de gravitation (33) sous cette forme: les expressions

D I)
L).r. U.r

1 J

Dpy j)P;
\)x- [)x1 J

sont nulles, quel que soit le vecteur P. Sous cette physionomie, on
voit combien la loi est proche des formules stokiennes
fondamentales qui ont également servi de base à l'électromagnétisme.

Soyons également très bref sur les déjà nombreuses extensions
des théories einsteiniennes. Ainsi A.-S. Eddington (Math. Theory,
p. 217) pose
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en faisant naître cette formule de considérations métriques
inutiles à invoquer ici comme base.

^jk.i gjkxn on ^trouve la métrique de Weyl; pour
nul celle de Riemann.

IX. — Bibliographie.

Nous n'indiquons ici que les écrits auxquels nous avons fait
un emprunt précis pour la rédaction de ce qui précède. Les
auteurs sont rangés par ordre alphabétique ce qui ne nous empêche
point de mentionner que ceux qui ont joué le rôle le plus important

sont MM. Th. De Bonder, A.-S. Eddington, H. Weyl.

A. Buhl. 1° Sur les formules fondamentales de VElectromagné-
tisme et de la Gravifîque. Trois Mémoires (« Annales de la Faculté
des Sciences de Toulouse », 1920-1921-1923). 2° Les Théories
einsteiniennes et les Principes du Calcul intégral (« Journal de
Mathématiques pures et appliquées », 1922).

E. Cartan. 1° Leçons sur les Invariants intégraux J. Hermann,
Paris, 1922). Exposé systématique relatif surtout aux formes
différentielles. La « dérivation extérieure » revient à la construction

des formules stokiennes. Voir une analyse de l'ouvrage dans
UEnseign. math. (1921-22, p. 389). 2<> Sur les variétés à connexion
affine et la Théorie de la Relativité généralisée (« Annales de
l'Ecole Normale, 1923). Travail qui, parmi les nombreuses
publications de M. Cartan sur le sujet, paraît tout particulièrement
d'envergure prodigieuse. Le point de départ est celui que nous
avons toujours adopté. «Au fond, écrit M. Cartan cit., p.
329), les lois de la Dynamique des milieux continus et celles
de l'Electromagnétisme s'expriment par des équations analogues
à la formule de Stokes ou à cette formule généralisée ».

Th. De Donber. 1° Théorie du champ électro-magnétique de
Maxwell-Lorentz et du champ gravifique d'Einstein. 2° La Gravi-
fique einsteinienne (Gauthier-Villars & Cie, Paris, 1920 et 1921).
Le premier de ces ouvrages donne les formules (14) et (15)
ainsi que toute une théorie précisée dans le second et définitive-
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ment mise au point en des Premiers Compléments (1922). Voir
analyse dans UEnseign. math. (1920, p. 237).

P. Dienes. Sur la structure mathématique du Calcul tensoriel

{«. Journal de Mathématiques pures et appliquées », 1924). Ce

travail est de ceux qui montrent que le ds2 est loin d'être la
chose primordiale en analyse tensorielle. Comme ici, les

formules de dérivation en D ont une tout autre origine logique.

A.-S. Edbington. 1° Espace, Temps, Gravitation (J. Hermann,
Paris, 1921). 2° The mathematical Theory of Relativity
(Cambridge University Press, 1923). A ces deux ouvrages on peut
emprunter très facilement le développement des applications de

la loi de gravitation (33). Voir analyse dans UEnseign. math.

(1921-22, p. 86).

E. Goursat. Leçons sur le problème de Pfaff. (J. Hermann,
Paris, 1922). Mêmes remarques que pour l'ouvrage de M. E.
Cartan. Celui de M. Goursat est loin d'être tendancieux au point
de vue einsteinien ; il ne s'en occupe point spécialement.
Cependant le jeu naturel d'une élégante analyse le conduit
(p. 151) aux formules (14). Voir analyse dans UEnseign. math.

(1921-22, p. 316).

R. Leveugle. Précis de Calcul géométrique. (Gauthier-Villars,
Paris, 1920). Cet ouvrage fournira très simplement les éléments
nécessaires à qui voudrait approfondir davantage notre
paragraphe IV. Voir analyse dans UEnseign. math. (1920, p. 238).

T. Levi-Civita. 1° Comment un conservateur pourrait-il arriver
au seuil de la Mécanique nouvelle (« L'Enseign. math. », 1920).
2° Nozione di parallelismo in una varietà qualunque e conseguente
specificazione geometrica délia curvatura riemanniana (Rendi-
conti, Palermo, 1917).

H.-A. Lorentz. The theory of Electrons and its applications
to the phenomena of Light and radiant Heat. (G.-E. Stechert,
New-York; R.-G. Teubner, Leipzig, 1916). Exposé magnifique
et d'une très grande clarté. On trouvera, dans les premières
pages, le procédé donné ici, au paragraphe IV, pour l'intégration
des équations de Maxwell-Lorentz.
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H. Poincaré. Electricité et Optique. Leçons professées à la

Sorbonne en 1888, 1890 et 1899. (Gauthier-Villars,Paris). Ces
leçons sont des plus suggestives au point de vue de l'histoire de
la Science. Elles montrent qu'en 1889, Henri Poincaré en était
déjà à l'enseignement classique du temps local (p. 530) et de la
contraction de Lorentz (p. 536). Ces conceptions ont donc
précédé de beaucoup les théories einsteiniennes proprement dites,
contrairement à ce que semblent croire de nombreuses personnes.
Voir analyse dans VEnseign. math. (1902, p. 307).

C. Somigliana. I fondamenti délia Relativité (« Scientia », juillet
1923). D'après cet article, la transformation de Lorentz

remonterait à 1887, époque où Woldemar Voigt l'aperçut dans
le domaine de l'élasticité. Dans cet ordre d'idées, étant donné
que la transformation n'est qu'une interprétation très simple
d une rotation, il est probable qu'on pourrait lui trouver des
origines encore beaucoup plus lointaines.

H. Weyl. Raum, Zeit, Materie (Vierte Auflage, J. Springer,
Berlin, 1921) ou Espace, Temps, Matière (A. Blanchard, Paris,
1922). Cet ouvrage expose une géométrie affine en connexion
profonde avec la théorie des groupes. Il suscite de grands
mouvements d'idées qui, en France, semblent surtout se réfléter dans
les travaux actuels de M. E. Cartan. Voir analyse dans VEnseign.
math. (1921-22, p. 235),

NOTE

Dans l'article de M. Arnold Reymond, qui précède celui-ci, il m'est
agréable de voir présenter la théorie relativiste comme une axiomatique
qui peut « élaborer le groupe d'axiomes nécessaires et suffisant à l'explication

des phénomènes réels» (pp. 267-268).
En effet, dans mon premier Mémoire des Annales de la Faculté des

Sciences de Toulouse (1920, p. 1), j'écrivais textuellement : Les temps
sont proches — s'ils ne sont déjà révolus — où l'on posera les conditions
analytiques, nécessaires et suffisantes, pour que les phénomènes physiques
puissent être conçus.

A. B.

IL
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