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ce qui est en valeur absolue inférieur & 1. Il s’ensuit donc de (5)
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(’est sur cette inégalité que repose la méthode de Piltz. Pour
une valeur donnée de ¢ on peut choisir A et B tels que le membre
de droite de cette derniere inégalité est beaucoup plus petit que
B, donc aussi beaucoup plus petit que la longueur de 'intervalle.

M. Piltz n’a jamais publié sa méthode. En 1901 il a écrit
deux lettres & M. Landau, pour exposer son procédé et pour
démontrer le théoréeme de Voronoi. Les démonstrations données
dans ces lettres, ne sont pas exactes, et ce n’est que depuis
quelques années que M. Landau * a réussi & en déduire approxi-
mation de Voronoi. Jusqu’a présent on n’a pu trouver aucun
résultat meilleur avec cette méthode, quoique M. Piltz pré-

tendit qu’il pouvait diminuer ’erreur, et la ramener & O <x§+g>
quelque soit le nombre positif .

9

9. — La méthode de Pfeiffer.

Le sort de la méthode de Piltz ressemble un peu a celui de la
troisitme méthode que nous allons exposer, celle de Pfeiffer .
L’inventeur a, il est vrai, publié sa méthode (1886); mais son tra-
vail manquait tellement de clarté et de précision qu’il est resté
sans influence sur le développement de la théorie analytique des
nombres, jusqu'a ce que M. Landau® en 1912 eiit trouvé

1 Gott. Nachr. (1920), p. 13-32.

“ Jahresbericht der Pfeifferschen Lehr- und Erziehungs-Anstalt zu Jena (1886).
® Wicn. Ber. (Ila), 121 (1912), p. 2195-2332 ; 124 (1915), p. 469-505.
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Perreur dans la démonstration et I'elit remise en ordre. Cette
méthode est basée sur ’6tude des séries de Fourier, On considére

Pintégrale
L :‘/‘fcpm(u)‘qpm(v) dudy |
D
ou I'on a posé

m
~
?]n(u) = /l _]L 2 2 COS Qhﬁu 5

h=—1

et ot le domaine D satisfait a des conditions trés générales.
L’idée fondamentale de la méthode est que, pour m croissant
indéfiniment, ®, tend vers le nombre des points entiers du
domaine D, & condition que les points entiers, situés sur le contour
de D, soient comptés d’une fagon déterminée; par exemple, si le
contour du domaine a une tangente en un point entier, on ne
comptera ce point qu’a demi.

Avec la méthode de Pfeiffer, M. Landau démontre les résul-
tats de Voronoi et de Sierpinski, donc (3) et (4) . Dans le pro-
bléme du cercle il en déduit non seulement une relation conte-
nant le symbole O de Landau, mais encore une relation contenant
le symbole O de Hardy-Littlewood. Il montre en effet que pour
chaque nombre : positif

1 2
P(x) — Q<xrs) o

c’est-a-dire que pour x croissant indéfiniment le quotient,

ne tend pas Veré 0. | |
St 3 ne dépend pas de z, la relation

P) = 0(xF)

1, : 1
est valable ‘pour g > 3, d’aprés (4), mais fausse pour 8 < e

Y Annali di Mat. (Tortolini), Rome (3) 20 (1913), p. 1-28 ; Gott. Nachr, (1915), p. 148-160.
? Wien. Ber. (11a) 124 (1915), p. 469-505. -
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En effet, si la relation était juste pour 8 < +» on'pourrait choisir
P (x)

1
.’1'4

le nombre positif ¢ de telle facon que 8 < 71 — ¢, et alors

3

tendrait vers O pour z croissant indéfiniment. La limite inférieure

. .- 1 1
de I’exposant (3 est donc contenue dans I'intervalle — < ¢ < T

=V =
La détermination exacte de la limite inférieure est un des pro-
blémes les plus intéressants de la théorie des nombres, mais on
n’y est jusqu’ici pas encore arrivé. |

M. Landau * applique aussi cette méthode & d’autres pro-
blémes; entre autres il en déduit les approximations analogues
pour une ellipse. D’autres applications ont été données par
Cauer ?, Hammerstein * et moi-méme *.

Comme le fondement de la méthode de Pfeiffer est une iden-
tité, on ne doit pas s’étonner de pouvoir en déduire non seule-
ment des approximations, mais aussi des identités. Par exemple,
s1 z est un nombre positif, non entier, on trouve?

P(x) = \/ZE \"/(”_) J, 22V nx) (6)
n=—1 i

et ®

A(x) = % + \/ZE \d/(%) L(2zV nr) | (7)

ou r (n) désigne le nombre des solutions entiéres de u? -~ ¢* — n,
et 'on a ‘

/ cos xu sin — du = Y, (22) — H, (2x) ;

IJ (,l‘) _ . ”
1]

Al

J, (z) est la premiére fonction de Bessel de premier ordre, Y, (aé)
est la deuxiéme solution habituelle de Iéquation différentielle

Wien. Ber. (11a) 124 (1915), p. 469-505.

Thése de doctorat (1914), Geettingue.

Thése de doctorat (1919), Geettingue.

Nieuw Archief (2) 13 (1920), p. 125-140.

Lanvau. 66t Nachr. (1920), p. 109-134.
Rocosinskr. Thése de doctorat (1922), Geettingue.

(= I I -
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de Bessel avec 1 comme paramétre, et H, (z) est la fonction
cylindrique

D) f; —xt
Hoe) == [ L a.

ve=—1

= _,
1

St z est entier, on doit remplacer dans (6) et (7) P(z) par
P (z) — 4 r(x), et A(x) par A () — = d(@).

Des relations (6) et (7), qui ont 6té découvertes par Voronoi !
et Hardy *, on déduit facilement les relations déja mentionnées
plusieurs fois de Voronoi et de Sierpinski *.

Comme je I'ai déja fait remarquer, 'ordre de grandeur exact
de P (x) n'est pas connu, d'ailleurs 'ordre de A(x) ne 'est pas
non plus. Par contre I'ordre exact des valeurs moyennes des
fonetions (A (1))* et (P (1))* dans Dintervalle 1<t <z est
connu. kin effet comme M. Cramér® ’a déduit de (6) et (7)
(il s’est servi méme de deux relations plus simples), on a pour
chaque nombre positif ¢

et

ou y, et y, désignent des nombres positifs constants. La valeur

moyenne des carrés des fonctions A (z) et P(z) a donc le méme

Ax) ., P(r)
et

4 4
Vie Vix
pas vers zéro pour z croissant indéfiniment. Nous pouvons done
écrire

ordre que la fonction V'z, de sorte que ne tendent

A(r) = gz(\)?) et P(x) = _(.2(\/4.;) .

Y Ann. de PEc. Norm. (3) 21 (19041), p. 207-268 et p. 459-534; Verh. IIl. intern. Math.
Kongresses in Heidelberg (1904), p- 241-245. Cf. Haroy, Lond. M. S. Proc. (2) 15 (1916),
p. 1-25 et S[KRPI;SKI. Prace mat.-fiz., 18, p. 1-59.

2 Quart. J., 46 (19151, p. 263-283.

¥ LANDAU. G6tt. Nachr. (1915), p. 161-171; Minch. Ber. (1915), p. 317-328 ; Math. Zs. 5
(1919), p. 319-320. %

¢ Math. Zs. 15 (1922), p. 201-220.




Si ’on emploie I’inégalité connue de Schwarz

b 2 b :
| (ff(t)dt),g (b —a) [Fo)de,

a

ou 'on suppose b>a, on trouve que la valeur moyenne des
- . 4

fonctions [A(z)| et | P(x)] ‘est au plus du méme ordre que V'z.

6. — La méthodede Landau.

La méthode basée sur 1'étude des fonctions de variables
complexes s’appuie sur le lien qui existe entre le nombre des
points entiers de certains domaines et la convergence de cer-
taines séries de Dirichlet. Nous n’avons & considérer ici que les
séries de Dirichlet ordinaires, c’est-a-dire celles du type

~ Si cette série converge en un point s,, elle converge en chaque
point s ayant une partie réelle plus grande. Pour le démontrer,
posons -

donc

Si ¢ et w sont des nombres entiers (w > V'Z 1), on a

w—1

oW
ns nS—s 2 | 0’5 2 / (n + 1 s-—so o

n=y n=y n—-u—-l

done

w—1 - ] . |
2 2 ( . + i — ‘F‘,_1 (8)
D R P ) A A

L’Enseignement mathém., 23¢ année, 1923. C 2 |
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les a, étant des coefficients constants et s une variable complexe.
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