Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 22 (1921-1922)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: APPLICATIONS GEOMETRIQUES DE LA CRISTALLOGRAPHIE
Autor: Winants, Marcel

Kapitel: § 1. — Etude sommaire de quelques cubiques planes.

DOI: https://doi.org/10.5169/seals-515727

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515727
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

PR i i o e R

6 M. WINANTS -

Sur une surface donnée, on considére des points et des lignes
remarquables. Citons les ombilics, les points paraboliques, les
points singuliers, les lignes de courbure, les lignes de courbure
totale constante, les géodésiques. Ces lignes et ces points ne sont
pas distribués d’une fagon quelconque.

Nous nous proposons d’appliquer la symétrie cristallogra-
phique & I’étude de certaines surfaces. Cette symétrie nous
donnera d’utiles renseignements sur la répartition des proprié-
tés géométriques.

Nous poursuivons un double but:

1o montrer les avantages qui peuvent résulter de cette méthode
pour la description d’une surface particuliére; :

20 faire voir que cette méthode pourrait servir de base & une
classification rationnelle des surfaces.

Nous nous adressons a la fois a des géométres et a des cristal-
lographes. Nous rappellerons le plus briévement possible les
définitions fondamentales de la géométrie et de la cristallographie.

Dans le premier chapitre nous ferons une étude détaillée d’une
surface du troisiéme ordre; dans le chapitre Il nous ferons une
étude succincte de deux surfaces du quatriéme ordre.

Dans ces deux premiers chapitres, nous aurons eu P’occasion
de rencontrer plusieurs principes généraux que nous résumerons
et que nous généraliserons dans le chapitre III. .

L’application de ces principes nous permettra d’aborder
quelques courbes et surfaces plus compliquées. Ce sera ’objet
du chapitre IV.

Enfin, dans un cinquiéme et dernier chapitre, nous esquisse-
rons une classification des surfaces au point de vue de la symétrie.

CHAPITRE PREMIER.

Etude détaillée d’'une surface tétraédrique.

§ 1. — Etude sommaire de quelques cubiques planes.

1. — Nous ferons précéder I’étude de chaque surface de celle
des principales courbes que ’on peut obtenir en la coupant par
des plans. "
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Dans la description des courbes algébriques planes du troi-
sibme ordre, nous adopterons la classification de ces courbes en
cinq grandes familles:

i
;;

non singuliéres ( bipartites . . . . . . . lo

(VI) % unipartites . . . . . . 20

Cubiques nodales { acnodales. . . . . 3°
unicursales. . (IV) crunodales ko

90

\ cuspidales (III)

Les cubiques non singuliéres sont de la VI® classe; les cubiques
nodales de la IVe: et les cubiques cuspidales de la ITI.

Les cubiques non singuliéres sont du premier genre, et les
cubiques unicursales du genre zéro.

Nous subdiviserons chaque famille en quatre groupes. Une
cubique peut rencontrer la droite de I'infini en:

a) trois points réels et distincts;

b) un point réel et deux points imaginaires;

“¢) un point simple et deux points coincidents;

d) trois points coincidents.

Les courbes algébriques planes du troisieme ordre se trouvent
ainsi distribuées en vingt grandes espéces. Par exemple, le folium
de Descartes [2* — 3azy + y* = 0] est une cubique [4°, 0] ; la
cissoide de Dioclés [z (2 + y*) = ay®], une cubique [5°, b] ; la
courbe zy(x + y) = &’ (x —y), une cubique [1°, a] ; enfin la
parabole semi-cubique (my® = 2 est une courbe [2°, d].

Chaque espéce se divise encore en plusieurs variétés ou sous-
variétés. Mais les vingt espéces nous suffiront pour ce qui vasuivre.

2. — Commencons par étudier le
lieu géométrique des points dont les <A
distances aux trois cotés d’un tri-
angle équilatéral ont un produit
constant.

Nous prendrons ce triangle comme
triangle fondamental, et nous em- &N
ploierons les coordonnées trilinéaires \
absolues. ﬂ/ c

L’équation du lieu pourra s’écrire: Fie. 1.

apy = m? .
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La courbe est une cubique ne rencontrant aucun coté du triangle
a distance finie.

Si la cubique passe par le point: «=ua, =0, y=c,
elle passe également par le point: o = b, 5 = ¢, y = a, et par le
point: « = ¢, f = q, 7 = 0. On ne doit pas perdre de vue que
’'on a:

o« + 8+ v = & = hauteur .

Si donc on fait tourner la cubique d’un angle de 1200 autour
d’une droite passant par le centre de gravité du triangle fonda-
mental, et perpendiculaire & son plan, la courbe viendra prendre
une position d’apparence identique & sa position premiére. Nous
dirons que la cubique posséde un axe ternaire normal & son plan.

En cristallographie, on appelle axe d’ordre n, et Pon repré-
sente par A” une droite qui jouit de la propriété suivante: quand
on fait tourner une certaine figure autour de cette droite, de la
n® partie d’un tour, elle vient occuper une position nouvelle,
complétement indiscernable de la position primitive. La figure
est alors dite restituée.

Les trois hauteurs du triangle de référence sont des A?, c’est-a-
dire des axes de symétrie ordinaire. Si la courbe passe par le
point (a, b, c), elle passe par le point (a, ¢, b). Une rotation de
180° autour d’une hauteur améne donc la restitution.

La courbe que nous étudions, admet alors quatre axes de
symétrie: A® 3A2

3. — Cette cubique ne peut avoir aucun point d’inflexion.

D’abord un pareil point ne peut se trouver en G.car ’axe ter-
naire exigerait la présence d’au moins trois tangentes inflexion-
nelles (trois ou bien un multiple de trois), ce qui ne peut pas étre.

La courbe ne peut pas avoir d’inflexion, en dehors du point G,
car les quatre axes entraineraient deux ou cinq autres inflexions,
suivant que la premiére appartiendrait ou non & l'une des hau-
teurs du triangle ABC. Toutes ces inflexions se trouveraient sur
une meme circonférence de centre G.

Mais une courbe algébrique plane du troisiéme ordre n’admet
jamais plus de trois inflexions réelles, et, quand elle en admet
trois, elles sont collinéaires. Or l’existence d’une droite d’in-
flexions n’est pas compatible avec la symétrie autour du A®
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4. — La courbe n’a certainement pas de centre, car le centre
d’une courbe d’ordre impair est toujours une inflexion.

Des raisonnements analogues prouvent que la cubique ne peut
avoir de noeud ni de rebroussement. On se rappellera qu’une
courbe non dégénérée du troisieme ordre ne peut avoir qu’un
seul point double. ,

5. — Des ‘deux numéros qui précédent, on peut conclure a la
proposition suivante:

TukorEME: Quand une courbe algébrique plane du trotsiéme
ordre, non dégénérée, posséde un axve de syméirie ternaire, normal
i son plan, elle n’admet nt inflexion, ni centre, ni neeud, nt rebrous-
sement. ’

6. — D’aprés ce que nous avons rappelé plus haut (1), toute
cubique rencontre la droite de l'infini en trois points dont, au
moing, un réel. Ce point réel, a U'infini, est le sommet d’un faisceau
de cordes paralléles, asymptotiques & la courbe. Il détermine
donc une direction asymptotique.

La symétrie ternaire associe, & cette direction, deux autres
directions asymptotiques. Toute cubique & A® appartient donc
au groupe a (1). |

La courbe ne rencontre aucune de ses trois asymptotes. Car,
si elle en rencontrait une, elle devrait les rencontrer toutes les
trois, en vertu de la symétrie ternaire. Mais on sait que les trois
intersections d’une cubique avec ses asymptotes, sont colli-
néaires. La droite, qu’elles déterminent, s’appelle la satellite de
la droite de I'infini. La symétrie exigerait que cette derniere eit
trois satellites, ce qui est absurde. Donec:

7. — TukoriME: Quand une courbe algébrique plane du irot-
siéme ordre, non dégénérée, posséde un axe de symélrie ternaire,
normal @ son plan, elle admet toujours trois asymptotes, et n’en
rencontre aucune.

8. — La cubique a3y = m®, que nous avons définie plus haut
(2), ne rencontre aucun c¢6té du triangle fondamental, & distance
finie. Par conséquent, elle les rencontre tous trois & distance
infinie. Elle admet donc ces trois cotés comme asymptotes.

9. — Le triangle fondamental ABC (2) partage le plan en sept
régions. L’une de ces régions est intérieure au triangle; trois autres

~sont adjacentes & des cOtés; et trois autres opposées a des angles.
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Sila constante m est négative, la courbe ne pénétre pas a 'inté-
rieur du triangle; elle se compose de trois branches, situées dans
les régions adjacentes aux cotés. Elle est done unipartite [29, a].

Si la constante m est positive, la courbe comprend toujours
trois branches, situées dans les régions opposées aux angles. Mais
il peut y avoir un ovale intérieur au triangle. Suivant les valeurs
positives de m, la courbe sera done unipartite ou bipartite.

Comme transition, nous aurons une courbe unicursale, néces-
sairement acnodale (4).

Nous nous proposons d’étudier séparément chacun de ces cas.

10. — Voyons d’abord comment la cubique rencontre les
médianes du triangle de référence. Entre les trois coordonnées
trilinéaires absolues d’un poins quelconque, on a la relation fon-

damentale. :
o+ [+ Yy=nh;

h désigne une hauteur-médiane (2).
Nous devons résoudre les trois équations suivantes, considé-
rées comme simultanées:

] N & (4 PRI, S
ally = m? o+ 3 +y="h, f=1v.

En vertu de la troisiéme, les deux autres peuvent s’écrire:

@2 J ¢ s
aB? = m? , o+ 28 = h .

L’avant-derniére montre que « et m ont toujours le méme signe.
Eliminons « ; il vient: )

m? = [2(h — 20) = h[? — 203 ;

si nous divisons par m® 8, nous obtiendrons:

1 h 1 2

=0 .

B omip T om
Le discriminant de cette équation cubique est:

1 1 3 1
= — e —— = (27 m3 — h3)
i mé 27 m? 277119( /m A )
Y
Il en résulte immédiatement le tableau suivant:
m < 0 cubique unipartite non singuliére [2°, a] ;
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m = 0 cubique dégénérée en trois droites ;
0<m<% cubique bipartite [1° a] ;
m = % cubique acnodale [3°, a] ;
m > %— cubique unipartite hon singuliere [20? al.
11. — Cubique acnodale. Le point double isolé ne peut étre

que G, en vertu de la symétrie. La courbe est unicursale. Nous
allons chercher son intersection mobile avec une droite variable
passant par G. Nous devons résoudre les équations:

h 3
lta+v(j—}—w\ifzg(u—}—v—}—w), o +L+yvy="1, aﬁyzj?ﬁ.

Nous avons proposé ce systéme, sous le n® 9214, dans le Jour-
nal de mathématiques élémentaires (Paris, Vuibert, 15 juillet 1920).
La nature géométrique du probléme suggére la solution: des
deux premiéres équations, on tire la valeur de (3 et de y en fonc-

tion de 2 ; on substitue dans la troisieme; on obtient une équa-

. . " h «
tion qui porr admettre la racine double: & = . On divise par:

(3o — h)? = 90 — 6o 4 R,

et 'on conserve une équation linéaire, de résolution facile. On

trouve ainsi:

. hiy — w)? ‘
= 3w — v)(u—w)’

73 et v s’obtiennent par permutation tournante.
12. — Cubique bipartite. 0 < m < % Plus haut (10). nous

avons cherché les points communs & la bissectrice 8 = y et a la
courbe. Nous avons obtenu I’équation:

2% — A2 4+ m®* =0 .

Puisque la cubique est bipartite, cette équation a ses trois
racines réelles. On applique le théoreme de Descartes, et 1’on
trouve une racine négative, et deux positives. La bissectrice
envisagée rencontre donc la courbe en trois points réels et dif-
férents, deux a 'intérieur du triangle, le troisiéme dans la ré-
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gion A (2). On a vu (10) que les trois valeurs de & ont le signe
de m. :

On fera le méme raisonnement pour les deux autres bissec-
trices. Ainsi la cubique posséde un ovale, intérieur au triangle
asymptotique (8). Cet ovale est ‘rés différent d’une ellipse: il
admet la symétrie du triangle équilatéral, A® 3A%

La cubique bipartite a neuf sommets. Nous appellerons som-
met tout point ou la courbe est rencontrée par Pun de ses axes
de symétrie.

13. — Nous proposons d’appeler tricentre le point ou le plan
d’une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane posséde un tricentre, elle est repré-
sentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On ‘doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que I'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu’en coor-
données cartésiennes. A propos de chaque probléme particulier,
la symétrie cristallographique d’une figure suggérera les coor-
données dont on doit se servir. ‘

y 2. — Symétrie du tétraédre régulier.

14. — Soit ABCD un tétraédre régulier. Ce polyédre n’admet
aucun centre. La perpendiculaire AH, abaissée d’un sommet sur
la face opposée, est un axe ternaire, car, si Pon fait tourner le
solide, autour de cette droite, d’un tiers de tour, il y a restitu-
tion (2). Par chaque sommet, passe un A*: il y a donc 4A°.
La droite MN, qui joint les milieux
9 de deux arétes opposées, est un axe de
0 symeétrie binaire. Donc 3AZ.
Les sept axes de symétrie se coupent
D B au centre de gravité du tétraddre.
Le plan ABM, qui contient une aréte
) et le milieu de ’aréte opposée, est un
Vs plan de symétrie. Chaque aréte déter-

Fig. 2. mine un pareil plan P. Donc 6 P.
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