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6 M. WIN A NT S

Sur une surface donnée, on considère des points et des lignes
remarquables. Citons les ombilics, les points paraboliques, les
points singuliers, les lignes de courbure, les lignes de courbure
totale constante, les géodésiques. Ces lignes et ces points ne sont
pas distribués d'une façon quelconque.

Nous nous proposons d'appliquer la symétrie cristallogra-
phique à l'étude de certaines surfaces. Cette symétrie nous
donnera d'utiles renseignements sur la répartition des propriétés

géométriques.
Nous poursuivons un double but:
1° montrer les avantages qui peuvent résulter de cette méthode

pour la description d'une surface particulière;
2° faire voir que cette méthode pourrait servir de base à une

classification rationnelle des surfaces.
Nous nous adressons à la fois à des géomètres et à des cristal-

lographes. Nous rappellerons le plus brièvement possible les
définitions fondamentales de la géométrie et de la cristallographie.

Dans le premier chapitre nous ferons une étude détaillée d'une
surface du troisième ordre; dans le chapitre II nous ferons une
étude succincte de deux surfaces du quatrième ordre.

Dans ces deux premiers chapitres, nous aurons eu l'occasion
de rencontrer plusieurs principes généraux que nous résumerons
et que nous généraliserons dans le chapitre III.

L'application de ces principes nous permettra d'aborder
quelques courbes et surfaces plus compliquées. Ce sera l'objet
du chapitre IV.

Enfin, dans un cinquième et dernier chapitre, nous esquisserons

une classification des surfaces au point de vue de la symétrie.

Chapitre premier.

Etude détaillée d'une surface tétraédrique.

§ L — Etude sommaire de quelques cubiques planes.

1. — Nous ferons précéder l'étude de chaque surface de celle
des principales courbes que l'on peut obtenir en la coupant par
des plans.
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Dans la description des courbes algébriques planes du

troisième ordre, nous adopterons la classification de ces courbes en

cinq grandes familles :

Cubiques

non singulières
(VI)

unicursales

bipartites
' unipartites

nodales i acnodales.

(IY) crunodales

cuspidales (III) •

1"

2«

3o

40

5°

Les cubiques non singulières sont de la VIe classe; les cubiques

nodales de la IVe; et les cubiques cuspidales de la IIIe.
Les cubiques non singulières sont du premier genre, et les

cubiques unicursales du genre zéro.

Nous subdiviserons chaque famille en quatre groupes. Une

cubique peut rencontrer la droite de l'infini en:

a) trois points réels et distincts;
b) un point réel et deux points imaginaires;
c) un point simple et deux points coïncidents;

d) trois points coïncidents.
Les courbes algébriques planes du troisième ordre se trouvent

ainsi distribuées en vingt grandes espèces. Par exemple, le folium
de Descartes [V — 3axy + y* 0] est une cubique [4°, b] ; la

cissoïde de Dioclès [x (x2 + y2) ay\ une cubique [5°, b] ; la

courbe xy(x -j- y) a? (x *— ?/), une cubique [1°, a] ; enfin la

parabole semi-cubique (my2 x3) est une courbe [5°, d].

Chaque espèce se divise encore en plusieurs variétés ou sous-

variétés. Mais les vingt espèces nous suffiront pour ce qui va suivre.
2. — Commençons par étudier le

lieu géométrique des points dont les

distances aux trois côtés d'un
triangle équilatéral ont un produit
constant.

Nous prendrons ce triangle comme

triangle fondamental, et nous
emploierons les coordonnées trilinéaires
absolues.

L'équation du lieu pourra s'écrire:
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La courbe est une cubique ne rencontrant aucun côté du triangle
à distance finie.

Si la cubique passe par le point: fi b.
elle passe également par le point: « c, et par le
point. ac, fi a, yb.Onne doit pas perdre de vue quel'on a:

a T- ß + y — h hauteur

^

Si donc on fait tourner la cubique d'un angle de 120° autour
d une droite passant par le centre de gravité du triangle
fondamental, et perpendiculaire à son plan, la courbe viendra prendre
une position d apparence identique à sa position première. Nous
dirons que la cubique possède un axe ternaire normal à son plan.

En cristallographie, on appelle axe d'ordre n, et l'on représente

par A." une droite qui jouit de la propriété suivante: quand
on fait tourner une certaine figure autour de cette droite, de la
ne partie d'un tour, elle vient occuper une position nouvelle,
complètement indiscernable de la position primitive. La figure
est alors dite restituée.

Les trois hauteurs du triangle de référence sont des A"2, c'est-à-
dire des axes de symétrie ordinaire. Si la courbe passe par le
point (a, è, c), elle passe par le point (a, c, b). Une rotation de
180 autour d'une hauteur amène donc la restitution.

La courbe que nous étudions, admet alors quatre axes de
symétrie: A3, 3A"2.

3- Cette cubique ne peut avoir aucun point d'inflexion.
D'abord un pareil point ne peut se trouver en G,car l'axe

ternaire exigerait la présence d'au moins trois tangentes inflexion-
nelles (trois ou bien un multiple de trois), ce qui ne peut pas être.

La courbe ne peut pas avoir d'inflexion, en dehors du point G,
car les quatre axes entraîneraient deux ou cinq autres inflexions,
suivant que la première appartiendrait ou non à l'une des
hauteurs du triangle ABC. Toutes ces inflexions se trouveraient sur
une même circonférence de centre G.

Mais une courbe algébrique plane du troisième ordre n'admet
jamais plus de trois inflexions réelles, et, quand elle en admet
trois, elles sont collinéaires. Or l'existence d'une droite d'in-

| flexions n'est pas compatible avec la symétrie autour du A3.
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4. — La courbe n'a certainement pas de centre, car le centre

d'une courbe d'ordre impair est toujours une inflexion.

Des raisonnements analogues prouvent que la cubique ne peut

avoir de nœud ni de rebroussement. On se rappellera qu'une

courbe non dégénérée du troisième ordre ne peut avoir qu un

seul point double.
5. — Des deux numéros qui précèdent, on peut conclure à la

proposition suivante:
Théorème: Quand une courbe algébrique plane du troisième

ordre, non dégénérée, possède un axe de symétrie ternaire, no? mal

à son plan, elle n'admet ni inflexion, ni centre, ni nœud, ni rebroussement.

6. — D'après ce que nous avons rappelé plus haut (1), toute

cubique rencontre la droite de l'infini en trois points dont, au

moins, un réel. Ce point réel, à l'infini, est le sommet d'un faisceau

de cordes parallèles, asymptotiques à la courbe. Il détermine

donc une direction asymptotique.
La symétrie ternaire associe, à cette direction, deux autres

directions asymptotiques. Toute cubique à A3 appartient donc

au groupe a (1).
La courbe ne rencontre aucune de ses trois asymptotes. Car,

si elle en rencontrait une, elle devrait les rencontrer toutes les

trois, en vertu de la symétrie ternaire. Mais on sait que les trois
intersections d'une cubique avec ses asymptotes, sont colli-

néaires. La droite, qu'elles déterminent, s'appelle la satellite de

la droite de l'infini. La symétrie exigerait que cette dernière eût

trois satellites, ce qui est absurde. Donc:
7. — Théorème: Quand une courbe algébrique plane du

troisième ordre, non dégénérée, possède un axe de symétrie ternaire,
normal à son plan, elle admet toujours trois asymptotes, et n'en

rencontre aucune.
8. — La cubique aßy rrc\ que nous avons définie plus haut

(2), ne rencontre aucun côté du triangle fondamental, à distance
finie. Par conséquent, elle les rencontre tous trois à distance
infinie. Elle admet donc ces trois côtés comme asymptotes.

9. — Le triangle fondamental ABC (2) partage le plan en sept
régions. L'une de ces régions est intérieure au triangle ; trois autres
sont adjacentes à des côtés; et trois autres opposées à des angles.
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Si la constante m est négative, la courbe ne pénètre pas à l'intérieur

du triangle; elle se compose de trois branches, situées dans
les régions adjacentes aux côtés. Elle est donc unipartite [2°,

Si la constante m est positive, la courbe comprend toujours
trois branches, situées dans les régions opposées aux angles. Mais
il peut y avoir un ovale intérieur au triangle. Suivant les valeurs
positives de m,la courbe sera donc unipartite ou bipartite.

Comme transition, nous aurons une courbe unicursale,
nécessairement acnodale (4).

Nous nous proposons d'étudier séparément chacun de ces cas.
10. Voyons d'abord comment la cubique rencontre les

médianes du triangle de référence. Entre les trois coordonnées
trilinéaires absolues d'un point quelconque, on a la relation
fondamentale. :

a "f ß + Y h ;

h désigne une hauteur-médiane (2).

^

Nous devons résoudre les trois équations suivantes, considérées

comme simultanées:

aßy — m3
-, a + ß -|- y h ß y

En vertu de la troisième, les deux autres peuvent s'écrire:

aß2 — m3 a -f- 2 ß — h

L'avant-dernière montre que «et ont toujours le même signe.
Eliminons « ; il vient:

m3 ß2(/z — 2 ß) — h ß2 — 2 ß3 ;

si nous divisons par m'ßJ,nous obtiendrons :

1_ h 12

_(i3 m3[im3
^

Le discriminant de cette équation cubique est:

» _
1 1 l'3l— m6 27 m9 27m9

"l<i
'

\
Il en résulte immédiatement le tableau suivant :

m<0 cubique unipartite non singulière [2°, a ;
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m — 0 cubique dégénérée en trois droites ;

0 < m < j cubique bipartite [1°, a] ;

h
m -77 cubique acnodale [3°, a] ;

m > (7 cubique unipartite non singulière [2°, a].

11. — Cubique acnodale. Le point double isolé ne peut être

que G, en vertu de la symétrie. La courbe est unicursale. Nous

allons chercher son intersection mobile avec une droite variable

passant par G. Nous devons résoudre les équations:

h h?'

u a + i' ß + u'y =ï| \u 4" 4" <p)
> a 4- ß + y /i aßy —

Nous avons proposé ce système, sous le n° 9214, dans le Journal

de mathématiques élémentaires (Paris, Vuibert, 15 juillet 1920).

La nature géométrique du problème suggère la solution: des

deux premières équations, on tire la valeur de ß et de y en fonction

de a ; on substitue dans la troisième; on obtient une équation

qui doit admettre la racine double: On divise par:

(3 a — h)2 9 a2 — 6 h ai -f- h2

et l'on conserve une équation linéaire, de résolution facile. On

trouve ainsi:
h (i-' — «')2

3 Iu — v) [u — »<-)

ß et y s'obtiennent par permutation tournante.

12. — Cubique bipartite. 0 < m < Plus haut (10); nous

avons cherché les points communs à la bissectrice ß y et-à la
courbe. Nous avons obtenu l'équation:

2 ß-3 _ h ß2 m3 _ 0
_

Puisque la cubique est bipartite, cette équation a ses trois
racines réelles. On applique le théorème de Descartes, et l'on
trouve une racine négative, et deux positives. La bissectrice

envisagée rencontre donc la courbe en trois points réels et
différents, deux à l'intérieur du triangle, le troisième dans la ré-
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gion A (2). On a vu (10) que les trois valeurs de a ont le signe
de m.

On fera le même raisonnement pour les deux autres bissectrices.

Ainsi la cubique possède un ovale, intérieur au triangle
asymptotique (8). Cet ovale est très différent d'une ellipse: il
admet la symétrie du triangle équilatéral, A3, 3A"2.

La cubique bipartite a neuf sommets. Nous appellerons sommet

tout point où la courbe est rencontrée par l'un de ses axes
de symétrie.

13. Nous proposons d'appeler tricentre le point où le plan
d une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane possède un tricentre, elle est
représentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que l'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu'en
coordonnées cartésiennes. A propos de chaque problème particulier,
la symétrie cristallographique d'une figure suggérera les
coordonnées dont on doit se servir.

Symétrie du tétraèdre régulier.

Soit ABCD un tétraèdre régulier. Ce polyèdre n'admet
aucun centre. La perpendiculaire AH, abaissée d'un sommet sur
la face opposée, est un axe ternaire, car, si l'on fait tourner le
solide, autour de cette droite, d'un tiers de tour, il y a restitution

(2). Par chaque sommet, passe un A3; il y a donc 4A3.
La droite MN, qui joint les milieux

de deux arêtes opposées, est un axe de
symétrie binaire. Donc 3A2.

Les sept axes de symétrie se coupent
au centre de gravité du tétraèdre.

Le plan ABM, qui contient une arête
et le milieu de l'arête opposée, est un
plan de symétrie. Chaque arête détermine

un pareil plan P. Donc 6 P.
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