Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 22 (1921-1922)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DÉDUCTION GÉOMÉTRIQUE DE L'EXPRESSION POUR LE RAYON

DE COURBURE

Autor: Child, J. M. / Petronievics, B.

Kapitel:

DOI: https://doi.org/10.5169/seals-515740

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

d'où

BC =
$$\delta(\rho \ \text{tg} \ \theta)$$

= $\rho \cdot \delta\left(\frac{\delta y}{\delta x}\right)$

d'où

$$\frac{\mathrm{BC}}{\mathrm{PR}} = \rho \cdot \frac{\delta\left(\frac{\delta y}{\delta x}\right)}{\delta x}$$

Donc, d'après le corollaire ci-dessus $\frac{BC}{PR}$ étant = $\left(\frac{PQ}{PR}\right)^3$, nous aurons, en passant à la limite,

$$\rho \cdot \frac{d^2y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx} \right)^2 \right\}^{\frac{3}{2}}$$

H

Dans la fig. 4, PT est la tangente au point P du cercle de centre O', QS la secante qui coupe ce cercle en des points P et Q, QT' la tangente du même cercle au point Q, O'F et O'F' les deux droites passant par les points P et Q du cercle et coupant la tangente AC (|| OX) en B et C, QN et PM \perp OX et || OY, PR \perp QN et || OX, DE || QS et D'E' || PT, \langle AO'P = θ et \langle PO'Q = $\Delta\theta$.

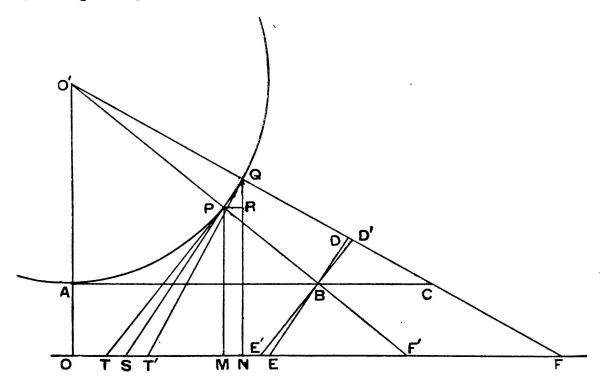


Fig. 4.

De la fig. 4 résulte immédiatement:

BC = O'A .
$$\Delta \operatorname{tg} \theta = \rho \Delta \operatorname{tg} \theta$$
 .

De $\triangle BCD \sim EFD$ on a:

$$\frac{BC}{BD} = \frac{EF}{ED} \ .$$

Mais comme, en passant à la limite, ΔEFD coïncide avec E'F'B, on aura:

$$\lim \frac{BC}{BD} = \frac{E'F'}{E'B} ,$$

et, $\Delta E'F'B$ étant $\sim TPM$,

$$\lim \frac{BC}{BD} = \frac{TP}{TM} . \tag{1}$$

D'autre part, BD étant || PQ, on a:

$$\frac{BD}{PQ} = \frac{BO'}{PO'} = \frac{BO'}{AO}$$

et, $\Delta BO'A$ étant $\sim PTM$,

$$\frac{BD}{PO} = \frac{PT}{MT} \tag{2}$$

Les équations (1) et (2) donnent:

$$\lim \frac{BC}{BD} \cdot \frac{BD}{PQ} = \frac{PT^2}{MT^2} . \tag{3}$$

De $\Delta PQR \sim SPM$ on a:

$$\frac{PQ}{PR} = \frac{SP}{SM} .$$

Mais comme, en passant à la limite, Δ SPM coïncide avec TPM, on aura:

$$\frac{PQ}{PR} = \frac{TP}{TM} \,. \tag{4}$$

Les équations (3) et (4) donnent:

$$\lim \frac{BC}{PQ} \cdot \frac{PQ}{PR} = \frac{TP^3}{TM^3}.$$
 (5)

Comme nous avons d'une part:

$$\lim \frac{BC}{PR} = \frac{\lim \rho \Delta \operatorname{tg} \theta}{\lim \Delta x} = \rho \cdot \frac{d \operatorname{tg} \theta}{dx} = \rho \cdot \frac{d^2 y}{dx^2}$$

et d'autre part (équation (4)):

$$\frac{\text{TP}^{3}}{\text{TM}^{3}} = \frac{\text{PQ}^{3}}{\text{PR}^{3}} = \frac{\text{PQ}^{2}}{\text{PR}^{2}} \cdot \frac{\text{PQ}}{\text{PR}} = \frac{dy^{2} + dx^{2}}{dx^{2}} \cdot \sqrt{\frac{dy^{2} + dx^{2}}{dx^{2}}}$$

$$= 1 + \left(\frac{dy}{dx}\right)^{2} \cdot \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} = \left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}$$

on aura enfin (équation (5)):

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} \tag{6}$$

CAMILLE JORDAN

(1838-1922)

Ce n'est pas entreprendre une tâche sans péril que d'essayer de rendre un juste hommage à un si grand nom. Nous nous appuierons surtout sur ce qui a déjà été dit par des voix particulièrement autorisées, notamment par celles de MM. Emile Bertin¹, Emile Picard¹, Robert d'Adhémar², Henri Lebesgue³, Henri Villat⁴.

Marie-Ennemond-Camille Jordan naquit à la Croix-Rousse, près Lyon, le 5 janvier 1838. Il était fils de l'ingénieur Alexandre Jordan et de Joséphine Puvis de Chavannes, sœur du célèbre peintre. Après de premières études au Collège d'Oullins et au Lycée de Lyon, il entra à l'Ecole Polytechnique comme élève en 1855, comme examinateur en 1873, comme professeur en 1876; il conserva ce dernier titre pendant 36 ans! Il fut aussi

¹ Comptes rendus de l'Académie des Sciences, 23 janvier 1922.

² Revue genérale des Sciences, 15 février 1922.

³ Revue scientifique, 22 avril 1922.

⁴ Journal de Mathématiques pures et appliquées, 1922, fascicule 1.