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DÉDUCTION GÉOMÉTRIQUE

DE L'EXPRESSION POUR LE RAYON DE COURRURE

PAR

J. M. Child (Manchester) et B. Petronievics (Belgrade).

Ayant envoyé l'article qui précède, en langue serbe, à Monsieur

J. M. Child, professeur à l'Université de Manchester, j'ai reçu
de lui la lettre suivante:

« I was very interested in the pamphlet you sent me.
Of course, I could not follow all the argument, printed as it
was in Serbian; and I consider it a very good idea to republish
it, with further developments, in French. Here is a little theorem

in infinitesimal geometry of the same kind, which, as far
as I am aware, is new. It leads directly to the value of the
radius of curvature in Cartesian Coordinates. Perhaps you
would care to treat it more rigorously according to the method
of the pamphlet; if so I should be honoured if you would include
it in your French publication as one of the further developments.

Yours verv sincerelv,
J. M. Child. »

La première partie de cet article contient la traduction de

la part de collaboration importante de M. Child, mentionnée
dans sa lettre; dans la deuxième, j'ai appliqué à sa fig. 1 ma
méthode géométrique.

I

Théorème. — Dans la fig. 1 ABC représente la tangente au
point A d'un cercle de centre 0; OB et OC coupent ce cercle
en des points P et Q.
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Soit QT une tangente au point Q, coupant ABC en T. Tirez
BD J_ OC. De P tirez PR || AC coupant QT en S; de même
tirez PW _J_ OC et, par Q, QR J_ PR. On aura alors:

BC OB SQ2

PW "" ÖC ' SR2 '

Preuve: Les angles marqués dans la fig. 1 sont évidemment
égaux. Donc, par la similitude des triangles, nous avons:

BC _ OC _ SQ \

BD ~~ OA ~~ SR / BC
__

OB OC _ OB SQ2

BD
__

OB _ OB pw ~~ 0A2 ~ oc ' SR2

P~W OP "" ÔÂ

Corollaire. A la limite, l'angle BOC dans la fig. 2 devenant
infiniment petit, on a (dans la fig. 1):

PR „ PW OB SQ PQ
SR ' PQ ' ÖC1 et

SR ^ PR
;

Fig. 2.
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ce qui donne finalement:

BC
__

PQ2
PO ~~ "PR2

OU
BC _ /PQ\3
PR — \PR /

'

Application au rayon de courbure. — Si p (dans la fig. 3)

représente le rayon de courbure de la courbe LM au point P,

et Q un point voisin, on aura alors:

PR 5.r RQ 5j

d'où

pq=]« + I'Iy '->

(SH'+(£)Ï
Dans la fig. 3 nous avons:

AB uz p tg 0

AC — p tg (i0 -f- 50)
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d'où

BC 8(p tg 9)

d'où

Donc, d'après le corollaire ci-dessus ^ étant — » bobs

aurons, en passant à la limite,
3

II

Dans la fig. 4, PT est la tangente au point P du cerclé de centre
0', QS la secante qui coupe ce cercle en des points P et Q,
QT' la tangente du même cercle au point Q, O'F et O'F' les deux
droites passant par les points P et Q du cercle et coupant la
tangente AC (|| OX) en B et C, QN et PM J_ OX et || OY,
PR X QN et y OX, DE || QS et D'E' || PT, < AO'P 9 et
< PO'Q Aâ.
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