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DEDUCTION GEOMETRIQUE
DE L’EXPRESSION POUR LE RAYON DE COURBURE

PAR

J. M. CuiLp (Manchester) et B. PErroniEVICs (Belgrade).

Ayant envoyé I’article qui précéde, en langue serbe, & Monsieur
J. M. CuiLp, professeur & I’Université de Manchester, )’al recu
de lui la lettre suivante:

(G I was very interested in the pamphlet you sent me.
Of course, I could not follow all the argument, printed as it
was in Serbian; and I consider it a very good idea to republish
it, with further developments, in French. Here is a little theo-
rem in infinitesimal geometry of the same kind, which, as far
as I am aware, is new. It leads directly to the value of the
radius of curvature in Cartesian Coordinates. Perhaps you
would care to treat it more rigorously according to the method
of the pamphlet; if so I should be honoured if you would include
it in your French publication as one of the further developments.

Yours very sincerely,
J. M. Child. »

La premiére partie de cet article contient la traduction de
la part de collaboration importante de M. Child, mentionnée
dans sa lettre; dans la deuxieme, j’ai appliqué a sa fig. 1 ma
méthode géométrique.

Théoréme. — Dans la fig. 1 ABC représente la tangente au

point A d’un cercle de centre O; OB et OC coupent ce cercle
en des points P et Q.
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Soit QT une tangente au point Q, coupant ABC en T. Tirez
BD | OC. De P tirez PR || AC coupant QT en S; de méme
tirez PW | OC et, par Q, QR | PR. On aura alors:

BC OB sQ
PW ™ OC SR’

\

A

Preuve: Les angles marqués dans la fig. 1 sont évidemment
égaux. Done, par la similitude des triangles, nous avons:
BC _0C_SQ )
kET)—_GK_E*Pf\) ~ BC _0OB.OC _ OB SQ?

i

BD OB OBS"PW‘" OA? — OC SRz

PW — OP — OA

Corollaire. A la limite, ’angle BOC dans la fig. 2 devenant
infiniment petit, on a (dans la fig. 1):

PR, PW . OB__ . SQ__PQ.
SR~ pPQ T oc” “ SRTTPR’

O

Fig. 2.

e



RAYON DE COURBURE

ce qui donne finalement:
BC _ PQ?
PQ — PR?
ou |
BC _ /PQV?
PR~ \PR/ °
Application au rayon de courbure. — Si p (dans la fig.
représente le rayon de courbure de la courbe LM au point
et Q un point voisin, on aura alors:
PR = &x , RQ = oy ,

1

PQ — 3 14+ <”> §2 5,

ox

() =]+ ()

Dans la fig. 3 nous avons:

d’ou

IR

o

-0

AB =9 tg

AC:ptg(Q—}—SO)

3)
P,
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d’ou

d’out

: BC PQ\?
9 b X »; - 14 <
Done, d’apres le corollaire ci-dessus TR etant = (P—H) , nous
aurons, en passant a la limite, ‘

d* dy\?
P‘zﬁ—?”(%)

Il

Dans la fig. 4, PT est la tangente au point P du cercle de centre
O’, QS la secante qui coupe ce cercle en des points P et Q,
QT la tangente du méme cercle au point Q, O'F et O'F’ les deux
droites passant par les points P et Q du cercle et coupant la
tangente AC (]| OX) en B et C, QN et PM | OX et || OY,
PR | QN et ||OX, DE[|QS et D'E'||PT, < AO'P =249 et
< PO'Q = Ag.
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