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190 M. WINANTS

En mettant & part le cas de la dégénérescence, on a toujours
affaire & une cubique [2°, a], qui satisfait aux regles de la symétrie
autour d’un A® (62).

89. — Donnons un tableau-résumé de la discussion qui préceéde:

k® > h®: Rencontre les prolongements des cotés. Chacune
des trois branches entoure une région hachurée;
k* = h® : Circonscrite au triangle ABC;

< k® < k3 : Rencontre les cotés (entre P et C);

=~
&

s

k3 — -= : Trois droites concourantes (dégénérescence);
h3
— < k* < + : Rencontre les cotés (entre P et Q);

k® — - : Tangente aux trois cotes;

l 3 o,
B < i. : Ne rencontre pas les cotés.

Toujours trois asymptotes concourantes.

{ 5. — Une deuxiéme surface.
90. — Nous allons esquisser une théorie de la surface:
y2z 4 2t 4 xfy = p? . p >0

Elle admet certainement un axe de symétrie ternaire, d’équa-
tions:
Elle ne rencontre aucun des axes coordonnés, ne pénetre pas
dans le triedre ou les trois coordonnées sont négatives. Elle
coupe les plans coordonnés suivant trois cubiques [3°c], ana-
logues a celle que nous avons étudiée plus haut (26, 75):

w1, yiz=p?
y =20, 2 = p?;
3 =0, why == p
91. — Un plan paralleéle a I'un des plans coordonnés (z = c),

fournit, comme section, la cubique:

a2y + ¢y + Fxe = p?,
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que nous avons discutée (81). En faisant voyager le plan sécant,
en laissant varier ¢ de — o0 & - w0, on engendre la surface par
le déplacement continu de la section, ce qui permet d’en avoir
une premiére idée assez claire. |
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Fig. 17.

Un plan perpendiculaire au A® (27) donne une cubique uni-
partite non unicursale, a trois asymptotes concourantes (82,
84, 89). Les directions asymptotiques de cette courbe restent -
invariables, quand le plan sécant se déplace (82, 83). Le lieu
des asymptotes se compose de trois plans qui se coupent suivant
le A% Du tableau-résumé du n°® 89, on déduit que la surface est
hémimorphe (63, 68).

92. — De I’étude que nous avons faite de la derniére cubique
(83), résulte encore la propriété suivante: Les trois plans des
asymptotes forment des diédres dont les trois plans bissecteurs
sont des plans de symétrie de la surface.

I’axe ternaire rencontre la surface en un seul point:

.17:)":::
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celui-ci n’est pas un centre, car si ’on y transporte l'origine des
coordonnées, I’équation de la surface devient:

2
() ()=

et cette équation renferme un terme de degré pair et deux termes
de degrés impairs.
La surface posséde bien la symétrie de la tourmaline (63):

A, 3P .
93. — En z, y, z, le plan tangent a pour équation:
(224 2x) X 4 (4 2p3) Y (3 + 2zx) Z = 3p* .

Au point ou la surface rencontre son axe de symétrie, le plan
tangent a pour équation:

X4+ Y4+2z=pVy.

Le point de contact est done un point ordinaire (19), et, par consé-
quent, un ombilic (62).

94. — Signalons enfin trois points de coordonnées simples,
appartenant a la surface:

—P- PP P —p.pPi p,p, —p.
En ces trois points, les plans tangents ont pour équations:
XN—3Y +Z+43p=0;
X+ Y—3Z+3 =0
—=3XN 4+ Y+ Z4+3p=0.
Ces trois plans tangents se coupent sur I’axe ternaire.

95. — Une discussion, semblable aux précédentes, prouverait
que les équations:

a4 =0 g‘2z+,:2x—{—x2y:0,

représentent des cones rhomboédriques, ayant done la symétrie
du spath d’Islande:
C, A%, 3A%.
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