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de ces régions,la courbure totale est positive; dans les trois autres,
elle est négative.

L'ensemble des trois sections principales constitue le lieu
géométrique des points paraboliques.

Tout ceci est conforme à la symétrie.

S 4. — De nouvelles cubiques planes.

75. — Dans les deux paragraphes qui vont suivre, nous donnerons

moins de détails que dans les deux précédents.
Examinons d'abord la cubique plane:

x2 y -}- cy2 -j- c2 x — p3 F

où l'on peut supposer p > 0. L'hypothèse c 0 nous ramène à la
cubique [5°, c] : x2y p3, que nous avons indiquée plus haut (26).

Fis- 11.

Fig. 13.

Fig. 11 : 3C3 =: 4p*

Fig. 13 : 3c3 > 4p3

Fig. 14.
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76. Cette cubique, quelle que soit la constante c, est

tangente à la droite de l'infini, et admet l'axe des comme asymptote.

Rencontre-t-elle les axes coordonnés L'hypothese y —

entraîne:

donc la courbe rencontre toujours son asymptote à distance

finie, une seule fois, à droite de l'origine (A). De même, x 0

donne :

r ± yA: ;

la courbe ne rencontre pas l'axe des y quand c est < 0 (fig. 14);

dans le cas contraire (fig. 11,12, 13), elle le rencontre en deux

points (B, C) symétriques par rapport à l'origine. Quand c

est < 0, la cubique ne possède aucun point dans l'angle des

axes où les deux coordonnées sont négatives (fig. 14).

En résolvant l'équation (E), on trouve:

2CE — x2 ± V-**4 — 4c3;c + 4c/;3 ; l'L

2xy — c2 ± Vc4 + 4/r!y — 4cr3 - (2*

On en conclut l'existence de deux coniques diamétrales, conjuguées

aux cordes asymptotiques:

x2 + 2cr 0 parabole ;

2xy c2 0 hyperbole équilalère.

77. — La cubique peut-elle admettre un point double à distance

finie Pour qu'il en soit ainsi, on doit avoir simultanément.

f x2y -J- cr2 -j- c1 X — p3 0 ;

— 2xy 4- c2 =r 0 ; — .r2 -f 2cy 0
<\r '

Les deux coniques diamétrales doivent donc se couper sur la

cubique. En éliminant x, y entre les trois équations précédentes,

on trouve : 3c3 ~ 4p3. On obtient alors la cubique crunodale,

que représente la fig. 11 (page 182). C'est une cubique [4°, c].
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78. Discutons d'abord la formule (2). La quantité subradicale

est un polynome du troisième degré, qui ne doit prendre
que des valeurs positives. Le coefficient de if est — 4c. Quand
c est > 0, il y a donc un maximum pour ?/; on sait, en effet, que,
pour des valeurs de la variable, de module suffisamment grand,
tout polynome a le signe du terme où l'exposant de la variable
est le plus élevé (fîg. 11, 12, 13). Quand c est 0, il existe un
minimum de y (fig. 14).

Le polynome dont nous nous occupons, peut d'ailleurs s'écrire:

Le discriminant de la parenthèse est:

- - (3c3 - 4n3) X + 12c3P3
64 27 c3 / X 64 x 27c3

Si l'on raisonne comme pour le trinôme du second degré, l'on
arrive aux conclusions suivantes:

1° 0 3c3 < 4p3: y admet un minimum et deux maxima
(fig. 12);

2° 3c3 > 4p3 : y admet un seul maximum ;

3° c < 0 : y admet un seul minimum.
79. De la formule (1), page 48, nous pourrons déduire

quelques résultats analogues. Soit f (x) le polynome subradical.
L'équation.

f(x) xA — 4c3 x -f- 4cp3 — 0

admet au moins deux racines imaginaires (théorème des lacunes).
Quand c est < 0 (fîg. 14), l'équation a deux racines réelles, de

signes contraires, entre lesquelles l'abscisse variable ne peut pes
être comprise.

Supposons que c soit > 0. Si deux racines sont réelles, elles
sont positives (Théorème de Descartes). Cherchons quand ce
dernier fait se produit: le minimum de / (x) doit être négatif.
Or on a:

f'{x) 4 (x* — C3) — 0 d'où .C — c ;
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quand les deux racines sont réelles, elles comprennent c (Théorème

de Rolle) ; ensuite :

/ V) ^ ; /"(<') l2t'2 > 0 ;

/'(c) c4 — 4c4 + 4 cp3

— _ c(3c3— 4

Dans le cas des fig. 11 et 12 (page 182), le minimum de / (s) n'est

pas négatif; l'abscisse x peut varier de — co à + co Dans le

cas des fig. 13 et 14, il existe un intervalle où la variable ne

peut pas entrer.
80. — Voici les coefficients angulaires de quelques tangentes:

V

_ __ _ 2.rj -f c2
•.

111

V ~~ x2 + Icy

"'B,C ~
± 2^/Ç"

_ + 2 > ° '

les tangentes aux points B, C, se coupent sur l'asymptote.

Remarqué. — La parallèle menée à l'axe des î/, par le point A

rencontre la courbe en un point D, de coordonnées:

v -Cc " e

81. — Résumons ce qui précède dans un tableau synoptique:

c<0 : unipartite non singulière [2°, c] ;

c 0: cuspidale [5°, c];

0 < c < py/g : bipartite [1°, c] ;

cpy/|: crunodale [4°, c] ;

c > P : unipartite non singulière [2°, c].

La recherche des points d'inflexion nous entraînerait trop loin.
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82. — Passons à la cubique:

ß%y _j_ y? a _J_ a2 ß — m3 (1)

Elle va nous fournir l'occasion d'appliquer l'un de nos principes
généraux (Chapitre III),

D'après ce qu'on a vu plus haut (62), cette cubique admet trois
asymptotes, que nous allons, tout d'abord, rechercher.

Par le sommet A, on peut mener
trois droites asymptotiques, dont
une seule pénètre à l'intérieur du
triangle de référence; soit y — rß
son équation; r est > 0; le système:

ß~ y -f- y2 a -f- a2 ß — nr' y — rß
a -f ß -f- y h

doit admettre des solutions infinies.
On élimine a et y; on trouve une
équation du troisième degré en ß;

on doit annuler le coefficient de /33; il vient:

F (r) ~ r3 — or — 1 0 ; (2|

cette équation admet une et une seule racine positive (Théorème
de Descartes): son discriminant est:

les trois racines sont donc réelles; il fallait s'y attendre.
La racine positive est supérieure à l'unité, car F(1)<0.

Cette racine est indépendante de m.
83. Nous allons effectuer une transformation des coordonnées

trilinéaires absolues. Menons les trois droites:

y — r[3 ; a — ry ; ß — ra

Elles déterminent un triangle équilatéral A'B'C', que nous
prenons comme nouveau triangle de référence. Dans le « Cours de
Géométrie analytique plane » de Falisse, 7e édition, revue et
augmentée par A. Gob, Bruxelles, 1912, à la page 578, au n° 735,
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on donne une formule qui exprime la distance S d'un point de

coordonnées a, ß, y, à la droite que représente l'équation:

T u a. EE «a -f vß + n '7 =: 0 ;

à savoir:
g

Hu Cf.

— 2 Tin' cos C

Les angles du triangle primitif sont:

A B G — 60° ;

donc :

Siq
~~

\'Tir — T in>

Le côté BT/ a pour équation : rß — y — o;

il vient:
__ rp - 7 _ rß — 7

V'T -f- 1 -h r V'*2 + ' + 1

Posons
E =E Vr2 -f- r -j- 1 — constante positive ;

il en résulte :

rß — 7 sa' /'7 — a. — =ß' r a — S r=r £7'

En résolvant ces trois équations, on trouve:

a Yr {r °! T $ + *

ß — T a' 4- 'T -f 7/ '

7 £>' + r»|3' + iy,

On substitue ces valeurs dans l'équation (1), et l'on obtient

r (2c -j- 1) (cr! -j- ß* 4- 7:! -j- ßaßy)
9m3 j,3

_J_ 3 (r2 _j_ 3,, (ß2y _p ßy2 _|_ y2a y/y2 aSß _|_ aßij —

On a tenu compte de l'équation (2). On a supprimé les accents,
devenus inutiles.
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La cubique a donc trois axes de symétrie ordinaire; ce sont
les bissectrices intérieures du triangle A'B'C'. Ces axes ont une
direction qui ne dépend nullement de m.

84. — On peut simplifier la dernière équation. On a:

h3 ja + ß + y)3 vas _f 3 v;a2|3 6 xßy

d'où l'on tire :

3 2a2/3 h3 — (ya3 -f 6 ajSy) ;

l'équation de la cubique peut enfin s'écrire:

a3 _j_ ßx _j_ y3 ßaßy — £3 ^ o

85. — Recherchons les asymptotes. D'après ce qui précède,
il existe une asymptote parallèle au nouveau côté B C.

a zrr constante

En combinant les deux équations:

ß:i -f f' + 6 aßy k3 — a3 ß -j- y h — a fJ j

on obtient:
(h — a) [{h — a)2 — 3ßy] -f 6aßy k3 — a3

Le coefficient de ßy est :

— 3 (h — a) -f- 6 a — 3 (3 a — /i) =: 0

Les équations des asymptotes sont donc:

h h h
» §; ß=-; y _.

La cubique a donc trois asymptotes
concourantes.

86. — Comment la cubique ren-
contre-t-elle les côtés du triangle fon-

j_jy_V damental Si, dans les équations (J),
\ \ on suppose « 0, on obtient:

h (h2 — 3jSy) A3 d'où ßy ~ — -- ;3k

mais:
<3 + y
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Les coordonnées ß, y, sont donc racines de l'équation:

h?> /.3
-i _ hz+

*
0 (1)

oh

dont le discriminant est:

h 3 — P 4P — A3
h2

oh oh

La cubique est tangente aux côtés si l'on a:

p l\
87. — Quand la cubique passe-t-elle en P Il faut que

l'équation (1) ait la solution i Alors:

*.= i\
On peut vérifier directement que, dans ce dernier cas, la cubique
dégénère en un système de trois droites :

a» ß3 _J_ y3 _}_ Qaßy _ ^ _ i(a _|_ ß _J_ y)« f

OU

3 (a3 + ß:i -j- y3 -f 6aßy) — (a -{- (3 -f- y)3 — 0

ou encore :

(2a — ß — y) (2j3 — y — a) (2y — a — ß) =z 0 c. q. f. d.

Mais
2a — ß — y — oa — h ;

On a donc trois parallèles aux côtés du triangle fondamental,
menées par son centre.

88. — La cubique est circonscrite au triangle A B C, si l'on a:
ks hB; elle rencontre les trois côtés si > : elle ne les^ 4 7

rencontre pas si k "<~.Quand elle les rencontre, c'est en des

points pour lesquels on a:
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En mettant à part le cas de la dégénérescence, on a toujours
affaire à une cubique [2°, a], qui satisfait aux règles de la symétrie
autour d'un A3 (62).

89. — Donnons un tableau-résumé de la discussion qui précède :

k'6 > A3 : Rencontre les prolongements des côtés. Chacune
des trois branches entoure une région hachurée ;

kz — hz : Circonscrite au triangle ABC;

~ < kB < A3 : Rencontre les côtés (entre P et C);

kz K : Trois droites concourantes (dégénérescence);

~ < A3 < : Rencontre les côtés (entre P et Q);

/r!
A3 - : Tangente aux trois côtés;

h3
kz < j : Ne rencontre pas les côtés.

Toujours trois asymptotes concourantes.

| 5. — Une deuxième surface.

90. — Nous allons esquisser une théorie de la surface:

J2 - + Z*x + jêy p3 [p > 0

Elle admet certainement un axe de symétrie ternaire, d'équations:

Elle ne rencontre aucun des axes coordonnés, ne pénètre pas
dans le trièdre où les trois coordonnées sont négatives. Elle

coupe les plans coordonnés suivant trois cubiques [5°,c],

analogues à celle que nous avons étudiée plus haut (26, 75):

x 0 y2 s — p3 ;

y — 0 z2 X p3 ;

3=0f x2 y p2

91. — Un plan parallèle à l'un des plans coordonnés (z c),

fournit, comme section, la cubique:

*') + c72 + c''x •
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