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182 M. WINANTS

de ces régions,la courbure totale est positive; dans les trois autres,
elle est négative.

L’ensemble des trois sections principales constitue le lieu
géométrique des points paraboliques.

Tout ceci est conforme & la symétrie.

§ 4. — De nouvelles cubiques planes.

75. — Dans les deux paragraphes qui vont suivre, nous donne-
rons moins de détails que dans les deux précédents.
Examinons d’abord la cubique plane:

2y 4 er? 4 Fa = p?, (1)

ot ’on peut supposer p > 0. L’hypothése ¢ =0 nous ramene a la
cubique [59, ¢]: 2%y = p%, que nous avons indiquée plus haut (26).
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Fig. 11: 3¢® = 4p* . Fig, 12: 0 < 3¢* < 4p* .
Fig. 13 : 3¢® > 4p* . Fig. 14: ¢ < b .




GLEOMETRIE 183

76. — Cette cubique, quelle que soit la constante ¢, est tan-
gente & la droite de Iinfini, et admet 1'axe des z comme asym-
ptote. Rencontre-t-elle les axes coordonnés ? L’hypothesey = 0
entraine:

)3
xr = —15— >0 ;
C

donc la courbe rencontre toujours son asymptote a distance
finie, une seule fois, & droite de I'origine (A). De méme, z = 0

donne:
3
T:j:\/k—;
* ¢

la courbe ne rencontre pas I’axe des y quand ¢ est < 0 (fig. 14);
dans le cas contraire (fig.11,12,13), elle le rencontre en deux
points (B, C) symétriques par rapport a Dorigine. Quand ¢
est < 0, la cubique ne possede aucun point dans l'angle des
axes ot les deux coordonnées sont négatives (fig. 14).

En résolvant ’équation (k), on trouve:

2y = — 2 1 Vﬁj— hedx —1——44cp3 : (1)

2ry = — ¢t = Yt 4 hpty — Aot (2)

On en conclut existence de deux coniques diamétrales, conju-
guées aux cordes asymptotiques:

2?24+ 2¢cy =0 parabole ;

22y + ¢2 =10 hyperbole équilatéere.

77. — La cubique peut-elle admettre un point double & distance
finie ? Pour qu'il en soit ainsi, on doit avoir simultanément:

f= aty + e + fae — pP =0

O of

k-[::2,1')'—}—(;2-:_0; i:xz—{—?cy:().

d ‘ oy ‘
Les deux coniques diamétrales doivent donc se couper sur la
cubique. En éliminant z, y entre les trois équations précédentes,
on trouve : 3¢® = 4p% On obtient alors la cubique crunodale,

que représente la fig. 11 (page 182). C’est une cubique [4°, c].
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78. — Discutons d’abord la formule (2). La quantité subra-
dicale est un polynome du troisiéme degré, qui ne doit prendre
que des valeurs positives. Le coefficient de y® est — 4c. Quand
cest > 0,1l y a donc un maximum pour y; on sait, en effet, que,
pour des valeurs de la variable, de module suffisamment grand,
tout polynome a le signe du terme ot 'exposant de la variable
est le plus élevé (fig. 11, 12, 13). Quand ¢ est < 0, 1l existe un
minimum de y (fig. 14).

Le polynome dont nous nous occupons, peut d’ailleurs s’écrire:

3 .3
/ 3 P .
— ¢ —_y — ).
<) C : "i>

Le discriminant de la parenthése est:

AN MNP Je® + 12¢%p? 4 16p°
B 2 = B T A X s e

St I'on raisonne comme pour le trinome du second degré, 1’on
arrive aux conclusions suivantes:

100 <3¢ < 4p®: y admet un minimum et deux maxima
(fig. 12); |

20 3¢® > 4p®: y admet un seul maximum:

3% ¢ < 0: y admet un seul minimum.

79. — De la formule (1), page 48, nous pourrons déduire
quelques résultats analogues. Soit f (z) le polynome subradical.
L’équation . '

fl) = at — 432 + 46p3 =0

admet au moins deux racines imaginaires {théoreme des lacunes).

Quand ¢ est < 0 (fig. 14), 'équation a deux racines réelles, de
signes contraires, entre lesquelles I’abscisse variable ne peut pas
étre comprise.

Supposons que ¢ soit > 0. Si deux racines sont réelles, elles
sont positives (Théoreme de Descartes). Cherchons quand ce
dernier fait se produit: le minimum de f () doit étre négatif.
-Or on a:

ffle) =4(x® — ) =0, d’ont X

i
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quand les deux racines sont réelles, elles comprennent ¢ (Théo-
réme de Rolle); ensuite:

[Mlx) = 12t 5 [(c) = 122 =5 0 3
[le) = ¢* — bec* 4 bep?
== — ¢[3e* — 4p?) .
Dans le cas des fig. 11 et 12 (page 182), le minimum de f (z) n’est
pas négatif; abscisse  peut varier de — o a + . Dans le

cas des fig. 13 et 14, il existe un intervalle ou la variable ne
peut pas entrer.

80. — Voici les coefficients angulaires de quelques tangentes:
of
0X 2y + ¢”
m == — o S —
of x? + 2¢)
oy
2 .6
m :~—~c?:: ——£—6<O 3
'a P
(,'4
. Lz I c‘.’ &
Mpe™= " 7 5 T T onend & 0.
-+ 2¢ P “ve

les tangentes aux points B, C, se coupent sur Iasymptote.
Remarque. — La parallele menée a I’axe des y, par le point A
rencontre la courbe en un point D, de coordonnées:

81. — Résumons ce qui précéde dans un tableaun synoptique:
¢ < 0: unipartite non singuliére [2°, c];

¢ — 0: cuspidale [5°, c];

0<e<Lp \/ : bipartite [10,‘0];

Il

3 /)7 ‘
c—=—7p \/g : crunodale [49°, c];
c>p \/% : unipartite non singuliére (20, c].

La recherche des points d’inflexion nous entrainerait trop loin.
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82. — Passons a la cubique:
ﬁ27+-72a—|—a2ﬁ:m3k (1)

Elle va nous fournir 'occasion d’appliquer I’un de nos principes
généraux (Chapitre III).

D’apreés ce qu’on a vu plus haut (62), cette cubique admet trois
asymptotes, que nous allons, tout d’abord, rechercher.

Par le sommet A, on peut mener
trois droites asymptotiques, dont
une seule pénétre a l'intérieur du
triangle de référence; soit 5 = rf
son équation; r est > 0 le systéme:

By + o+ 2B = m? v=rfB,
a—{—ﬁ—l—-y:bﬂ.

doit admettre des solutions infinies.
Fig. 15, On élimine « et y; on trouve une
equation du troisieme degré en (3;

on doit annuler le coefficient de 3°; il vient:

Fir)y=r—3r—1=20; (2)

cette équation admet une et une seule racine positive (Théoréme
de Descartes): son discriminant est:

127 8 _
PR AN

les trois racines sont donc réelles; il fallait s’y attendre.

La racine positive est supérieure a I'unité, car F (1) < 0.
Cette racine est indépendante de m.

83. Nous allons effectuer une transformation des coordonnées
trilinéaires absolues. Menons les trois droites:

7:rﬁ;‘ &= Py | B=ra.

Elles déterminent un triangle équilatéral A'B'C/, que nous pre-
nons comme nouveau triangle de référence. Dans le « Cours de
Géométrie analytique plane» de Falisse, 7¢ édition, revue et
augmentée par A. Gob, Bruxelles, 1912, a la page 578, au n° 735,
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on donne une formule qui exprime la distance ¢ d’un point de
coordonnées a, 38, v, & la droite que représente I’équation:

Suo = wua + v 4+ wy=20;
a savoir:

¥ — 2Luv cos C
Les angles du triangle primitif sont:

A—B—C=—560°;
donc:

A—Jl(d

o7

V Yu — N iy

Le coté B'CC a pour équation: r|

il vient:
/ — I‘ ﬁ —— ‘,r/,,,, R _.A.I_;_é____:’j PR .
V P2 M—{—W“l 4 V2 + ;:A—|—' 1

Posons
= '\/1*2 -+ r 4+ 1 = constante positive ;

|
l

il en résulte:
r— g9 =—ca , ry —oa=:<b", ro— B = ¢y

En résolvant ces trois équations, on trouve:

‘ (?" <7‘/ + ﬁ/ __I_ r?,}/) .

C)O‘ @
~

€ P ’
B= o (e )
a + r? ﬁ’ + ry)

On substitue ces valeurs dans I’équation (1), et 'on obtient

ri2r 4 1)@t 4 B 4 3+ 6afy)
+ 307 3 NIy + Ly + e 4 9o + PP+ af)

9m’1"’
3

g

On a tenu compte de I’équation (2). On a supprimé les accents,
devenus inutiles. |
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La cubique a donc trois axes de symétrie ordinaire: ce sont
les bissectrices intérieures du triangle A'B'C’. Ces axes ont une
direction qui ne dépend nullement de m.

84. — On peut simplifier la derniére équation. On a:

R = (a 4 B + ) = Za3 3B + 68y

d’ou 'on tire:

3X2°B = h* — (Xa® -+ 6afy) ;
Péquation de la cubique peut enfin s’écrire:

3 3 o3 i —_ L3 2

2 4 B P+ bafy =k Z0

85. — Recherchons les asymptotes. D’aprés ce qui précéde,

1l existe une asymptote paralléle au nouveau coté B C.

o — constante .
En combinant les deux équations:
‘63—1—73—}—60&;97:/53——&, ﬁ~|—7:h—-m, (J)

on obtient:
(h — o) [(h — ) — 3By] + 6afy = i — &

Le coefficient de £y est:
—3(h —a)F+ba=23Ba—h)=0 .

Les équations des asymptotes sont done:
h h h
37 P=gi 1=3.
La cubique a donc trois asymptotes
concourantes.

86. — Comment la cubique ren-
contre-t-elle les cotés du triangle fon-
damental ? Si, dans les équations (J),

on suppose a = 0, on obtient:

h(h?—38y) =k, don fy= _’i_;;l L

mais:

ﬁ—f—’/:h.
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Les coordonnées (3, y, sont donc racines de I’équation:

5 __ /3
:2——h:+h ~~/:0, (1)

3h

dont le diseriminant est:

T h3 — /3 _ 43 e P

3h 3h

La cubique est tangente aux c6tés si 'on a:

87. — Quand la cubique passe-t-elle en P ? I1 faut que

I’équation (1) ait la solution z = = . Alors:

=

*)
9

On peut vérifier directement que, dans ce dernier cas, la cubique
dégénere en un systéme de trois droites:

3

oc:‘—{—ﬁg—}—'y?’—}—ﬁocﬁ'y:/ﬁ‘:—g :—;—(a—{—ﬁ—}—'ﬂ:;,
ou
3(0% + B 97 + Bofy) — (- B+ =0,
ou encore:
(2a—~ﬁ—ﬂ/)(?ﬁ—'y—a)(?y—a——ﬁ):o, c. q.f. d.
Mais .

20 — B — 9y =3a — h ;

On a donc trois paralléles aux cotés du triangle fondamental,
m~nées par son centre.

88. — La cubique est circonscrite au triangle A B C, sil’on a:

. ,e s . h®
kE® = h®; elle rencontre les trois cotés si k* > 75 elle ne les

. o h?
rencontre pas s1 £ < 7. Quand elle les rencontre, c’est en des

points pour lesquels on a:
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En mettant & part le cas de la dégénérescence, on a toujours
affaire & une cubique [2°, a], qui satisfait aux regles de la symétrie
autour d’un A® (62).

89. — Donnons un tableau-résumé de la discussion qui préceéde:

k® > h®: Rencontre les prolongements des cotés. Chacune
des trois branches entoure une région hachurée;
k* = h® : Circonscrite au triangle ABC;

< k® < k3 : Rencontre les cotés (entre P et C);

=~
&

s

k3 — -= : Trois droites concourantes (dégénérescence);
h3
— < k* < + : Rencontre les cotés (entre P et Q);

k® — - : Tangente aux trois cotes;

l 3 o,
B < i. : Ne rencontre pas les cotés.

Toujours trois asymptotes concourantes.

{ 5. — Une deuxiéme surface.
90. — Nous allons esquisser une théorie de la surface:
y2z 4 2t 4 xfy = p? . p >0

Elle admet certainement un axe de symétrie ternaire, d’équa-
tions:
Elle ne rencontre aucun des axes coordonnés, ne pénetre pas
dans le triedre ou les trois coordonnées sont négatives. Elle
coupe les plans coordonnés suivant trois cubiques [3°c], ana-
logues a celle que nous avons étudiée plus haut (26, 75):

w1, yiz=p?
y =20, 2 = p?;
3 =0, why == p
91. — Un plan paralleéle a I'un des plans coordonnés (z = c),

fournit, comme section, la cubique:

a2y + ¢y + Fxe = p?,
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