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176 M. WINANTS

S 2. — Deux cubiques planes.

64. Soit d'abord la courbe que représente l'équation:
x:i yi __ az

;
/ )j

où 1 on suppose : a o. Elle rencontre les axes aux points
(a, o) et (o, a). Elle admet la bissectrice (x y) comme axe de
symétrie A2. L'équation (1) peut s'écrire:

{x -j- y) (,y2 — xy -f- y2) — a3 ;

la courbe est donc asymptote à la droite:

x -f V 0

La cubique rencontre la droite de l'infini en un seul point
réel: elle est du groupe b (1).
A toute valeur de x correspond

une seule valeur réelle
de y, et réciproquement; par
conséquent, la courbe ne
possède aucun point double, elle
n'est pas unicursale. Mais elle
est unipartite. C'est donc une
cubique [2°, è].

En dérivant deux fois l'équation

(1 on trouve:

Fig. 8. x" ~f~ .V T — 0 ; (2)

2y + 2>/» + y2y" 0 (3)

De (2), on tire
' ^^ o

* f ~

l'ordonnée y est constamment décroissante. En A et B, les

tangentes sont parallèles aux axes coordonnés. Des équations
(2) et (3) combinées, on déduit le rayon de courbure (50):

r — (*4 + r4)^
1 2 a'1 xy

cette formule montre que les points A et B sont des inflexions.

:
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65. — Prenons un triangle équilatéral comme figure de

référence, et considérons la cubique:

a3 -f- ß3 + V3 — m?' •

Par les sommets du triangle
fondamental, menons des pa- ^
rallèles à ses côtés. Elles
déterminent un triangle équilatéral

A'B'C', que nous prenons
comme nouvelle figure de

référence.

Pour un point quelconque
du plan (M), nous aurons:

a — PM P'M
v/9

Fig. 9.

Si h désigne la hauteur du premier triangle, il viendra:

h a + ß -f y a + a' ß + ß' 7 + Y
2 Iia' -f- fi' + y'— 2 (a + a') ;

2« — a' + fi' + 7' ;

2ß a' — fj' + y :

27 a' + F - 7' :

L'équation (4) peut donc s'écrire:

8wi3 (— a' -{- j3' -f- y')3 -j- (a' — fif -f + (a' + ßr — -/ 3

(a' + |S' + /i:! — 24 a'p'i 8Ä3 — 24 oc' ^ 7' ;

donc : a'/S'y' ^ (A8 — m8).

Nous retrouvons une cubique dont il s'est agi précédemment
(2).

66. — Comme digression, nous pourrons énoncer le théorème
suivant :

On admet la règle des signes des coordonnées trilinéaires
absolues, et l'on considère un triangle équilatéral de référence.
Le lieu géométrique des points-dont le produit des distances
aux trois côtés du triangle fondamental est une constante, est
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en même temps le lieu géométrique des points dont la somme
des cubes des distances aux côtés du triangle médian est également

constante.

Si — Une première surface.

67. Nous allons étudier la surface:

X3 + J3 + ~3 p3

où la constante p est positive. Cette surface ne possède aucun
point dans le trièdre où les trois coordonnées sont négatives.
Elle admet un axe ternaire d'équations:

et trois plans de symétrie:

passant par 1 axe A3. Nous avons donc bien affaire à une surface-
tourmaline (63).

L'axe A3 rencontre la surface en un ombilic (62):

68. Coupons la surface par un plan normal au A3 Plus haut
(27), nous avons établi des formules pour la transformation des
coordonnées:

.r y z /Y
â - ß ~ y - V 3

;

a + ß+ y ~ (x+ y-fz) i/| ;

la section a donc pour équation triangulaire:

r: ; ß3~Ç (1)

Si le plan sécant a pour équation:

x + y ~b - — /
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