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176 M. WINANTS

N 2. — Deux cubiques planes.
64. — Soit d’abord la courbe que représente I’équation:
x4y = ab 1)

ou l'on suppose: a > o. Elle rencontre les axes aux points
(a, 0) et (o, a). Elle admet la bissectrice (z = y) comme axe de
symétrie A% L’équation (1) peut s’écrire:

(2 + 7)) (22 — x> + »%) = a® ;
la courbe est donc asymptote a la droite:
x4+ yr=0.

La cubique rencontre la droite de l'infini en un seul point

réel: elle est du groupe b (1).

Y - A toute valeur de z corres-

pond une seule valeur réelle

de y, et réciproquement; par

conséquent, la courbe ne pos-

sede aucun point double, elle

N [ n’est pas unicursale. Mais elle

est unipartite. C’est donc une

cubique [20, b].

En dérivant deux fois I’équa-

tion (1), on trouve:
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Fig. 8. 4yt =0 (2)
20 + 29" + 9" =0 . (3)
De (2), on tire

(M

=

- = 0 ;

Il
l
I

=
i

Pordonnée y est constamment décroissante. En A et B, les
tangentes sont paralléles aux axes coordonnés. Des équations
(2) et (3) combinées, on déduit le rayon de courbure (50):

\
(x* + 2*)2
o= -

e

2 a 3 "Tj .

cette formule montre que les points A et B sont des inflexions.
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65. — Prenons un triangle équilatéral comme figure de réfé-
rence, et considérons la cubique:
o + PP A = m? . (&)
Par les sommets du triangle , a4 P B

fondamental, menons des pa-
ralleles & ses cotés. Elles dé-
terminent un triangle équila-
téral A'B'C’, que nous prenons
comme nouvelle figure de réfé-
rence. |

Pour un point quelconque
du plan (M), nous aurons:

o= PM ; o = P’M . Fig. 9.

Si h désigne la hauteur du premier triangle, il viendra:

a+f+y=at+ ' =+ =9+9,
2h =o' + '+ 9 =2(a + &) ;

20 = —a' 4+ '+ 9
Qﬁ:a’-(s’—[—y’;
2y =o' + [ — 9

L’équation (4) peut donc s’écrire:

8m = (— o/ £ B YR (o — B F P (0 B — o
= (@ + ) — 20 By = 8k — b By

done: o'y’ =% (h® — m3).

Nous retrouvons une cubique dont il s’est agi précédemment
(2). |

66. — Comme digression, nous pourrons énoncer le théoréme
suivant:

On admet la régle des signes des coordonnées trilinéaires
absolues, et I’on considére un triangle équilatéral de référence.
Le lieu géométrique des points-dont le produit des distances
aux trois cotés du triangle fondamental est une constante, est

[’Enseignement mathém., 22¢ année; 1921 et 1922. 12
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en meme temps le lieu géométrique des points dont la somme
des cubes des distances aux cotés du triangle médian est égale-
ment constante.

§ 3. — Une premiére surface.

67. Nous allons étudier la surface:

1'3‘*"3'3'{‘53:[93!

ou la constante p est positive. Cette surface ne possede aucun
point dans le triédre ou les trois coordonnées sont négatives.
Elle admet un axe ternaire d’équations:

memp==3,

=

et trois plans de symétrie:

o

== & X =y ;

y=5

passant par Paxe A® Nous avons done bien affaire 4 une surface-
tourmaline (63).
L’axe A® rencontre la surface en un ombilic (62):

P

Vs

68. -— Coupons la surface par un plan normal au A® Plus haut
(27), nous avons établi des formules pour la transformation des

coordonnées: |
¥ i . y . ~ . E .
« BTy V3

‘ ]
a+.3+7:<x+3‘+2>\/—2-:

’1:3:’::

la section a donc pour équation triangulaire:

33
a:’+ﬁ3+73:(p\/-2-)- ()

Si le plan sécant a pour équation:

x4y ta=1,
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