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Dans le n° 62, nous reprendrons et nous généraliserons plu-
sieurs théorémes démontrés précédemment. Leur évidence est
maintenant si grande que tout nouvel essai de démonstration
nous parait superflu.

Nous tenons encore a faire observer que la méthode s’applique
également bien & la géométrie plane et & la géométrie solide.

62. — Si une surface est rencontrée par un axe de symétrie
d’ordre supérieur & deux, chaque point d’ intersection sera un
point singulier ou un ombilic. |

Si une cubique plane admet un A® perpendiculaire a son plan,
elle ne posséde aucun point d’inflexion & distance finie, ni
centre, ni point crunodal, ni rebroussement.

Si une courbe algébrique plane de troisiéme classe admet un
A® perpendiculaire a son plan, elle ne posséde, a distance finie,
ni inflexion, ni bitangente.

Si une courbe algébrique plane de quatrieme ordre admet un
A* perpendiculaire & son plan, elle ne posséde aucun point
multiple & tangentes réelles.

Une cubique & A3 posséde toujours trois asymptotes & distance
finie, et n’en rencontre aucune.

CHAPITRE IV.

Deux surfaces ayant la symétrie d’'une tourmaline.

{ 1. — Symétrie cristallographique de la tourmaline.

63. — Imaginons une pyramide triangulaire réguliére. Elle
posséde un axe de symétrie ternaire. Par chaque aréte latérale
et ’apothéme de la face opposée, passe un plan de symétrie.

Le symbole (15) est donc:
A?, 3P.

Prenons un prisme triangulaire régulier, et, sur chacune de
ses bases, placons une pyramide réguliere, mais de telle fagon
que les deux pyramides n’aient pas la méme hauteur. Le solide
total conserve la méme symétrie et donne une idée suffisamment
exacte du cristal de tourmaline.
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N 2. — Deux cubiques planes.
64. — Soit d’abord la courbe que représente I’équation:
x4y = ab 1)

ou l'on suppose: a > o. Elle rencontre les axes aux points
(a, 0) et (o, a). Elle admet la bissectrice (z = y) comme axe de
symétrie A% L’équation (1) peut s’écrire:

(2 + 7)) (22 — x> + »%) = a® ;
la courbe est donc asymptote a la droite:
x4+ yr=0.

La cubique rencontre la droite de l'infini en un seul point

réel: elle est du groupe b (1).

Y - A toute valeur de z corres-

pond une seule valeur réelle

de y, et réciproquement; par

conséquent, la courbe ne pos-

sede aucun point double, elle

N [ n’est pas unicursale. Mais elle

est unipartite. C’est donc une

cubique [20, b].

En dérivant deux fois I’équa-

tion (1), on trouve:
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Fig. 8. 4yt =0 (2)
20 + 29" + 9" =0 . (3)
De (2), on tire

(M

=

- = 0 ;

Il
l
I

=
i

Pordonnée y est constamment décroissante. En A et B, les
tangentes sont paralléles aux axes coordonnés. Des équations
(2) et (3) combinées, on déduit le rayon de courbure (50):

\
(x* + 2*)2
o= -

e

2 a 3 "Tj .

cette formule montre que les points A et B sont des inflexions.
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65. — Prenons un triangle équilatéral comme figure de réfé-
rence, et considérons la cubique:
o + PP A = m? . (&)
Par les sommets du triangle , a4 P B

fondamental, menons des pa-
ralleles & ses cotés. Elles dé-
terminent un triangle équila-
téral A'B'C’, que nous prenons
comme nouvelle figure de réfé-
rence. |

Pour un point quelconque
du plan (M), nous aurons:

o= PM ; o = P’M . Fig. 9.

Si h désigne la hauteur du premier triangle, il viendra:

a+f+y=at+ ' =+ =9+9,
2h =o' + '+ 9 =2(a + &) ;

20 = —a' 4+ '+ 9
Qﬁ:a’-(s’—[—y’;
2y =o' + [ — 9

L’équation (4) peut donc s’écrire:

8m = (— o/ £ B YR (o — B F P (0 B — o
= (@ + ) — 20 By = 8k — b By

done: o'y’ =% (h® — m3).

Nous retrouvons une cubique dont il s’est agi précédemment
(2). |

66. — Comme digression, nous pourrons énoncer le théoréme
suivant:

On admet la régle des signes des coordonnées trilinéaires
absolues, et I’on considére un triangle équilatéral de référence.
Le lieu géométrique des points-dont le produit des distances
aux trois cotés du triangle fondamental est une constante, est

[’Enseignement mathém., 22¢ année; 1921 et 1922. 12
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en meme temps le lieu géométrique des points dont la somme
des cubes des distances aux cotés du triangle médian est égale-
ment constante.

§ 3. — Une premiére surface.

67. Nous allons étudier la surface:

1'3‘*"3'3'{‘53:[93!

ou la constante p est positive. Cette surface ne possede aucun
point dans le triédre ou les trois coordonnées sont négatives.
Elle admet un axe ternaire d’équations:

memp==3,

=

et trois plans de symétrie:

o

== & X =y ;

y=5

passant par Paxe A® Nous avons done bien affaire 4 une surface-
tourmaline (63).
L’axe A® rencontre la surface en un ombilic (62):

P

Vs

68. -— Coupons la surface par un plan normal au A® Plus haut
(27), nous avons établi des formules pour la transformation des

coordonnées: |
¥ i . y . ~ . E .
« BTy V3

‘ ]
a+.3+7:<x+3‘+2>\/—2-:

’1:3:’::

la section a donc pour équation triangulaire:

33
a:’+ﬁ3+73:(p\/-2-)- ()

Si le plan sécant a pour équation:

x4y ta=1,
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le triangle fondamental aura pour hauteur:

/3
a+ﬁ+7:il\/§’ 2)

suivant que [ est > ou < O.

La cubique d’intersection est donc une courbe que nous
avons étudiée (65). Si l’on se reporte au début de ce travail (2)
et qu’on tienne compte des équations (1) et (2), on verra que
nous sommes en droit de formuler les conclusions suivantes:

Pour de trés grandes valeurs de ! (par exemple > 20 p), la
courbe d’intersection se compose de trois branches infinies,
asymptotes aux cotés-du triangle fondamental. Si1 'on se reporte
au n® 65, on verra que, pour [ = - I’ et | =—10, les deux
triangles asymptotiques ont des dispositions inverses. Ceci
démontre qu’il n’existe aucun plan de symétrie, perpendiculaire
au A% Dans les deux sens ou I’on peut parcourir cet axe, la
surface se comporte donc différemment. D’ailleurs, quelque
grande que soit la valeur attribuée a [, on obtient toujours une
section.

Empruntant un terme a la cristallographie, nous dirons que
la surface est hémimorphe. Le cristal hémimorphe de tourmaline
porte des faces différentes & ses deux bouts (63).

En géométrie analytique élémentaire, les deux paraboloides
du second ordre sont des surfaces hémimorphes.

69. — Perpendiculairement a ’axe ternaire, il existe un plan
sécant qui ne rentre pas dans la théorie précédente, et qui mérite
une mention spéciale. C’est le plan:

.xr—}—y—}—::: .

I n’y a plus de triangle de référence. On obtient alors une
cubique qui se projette, sur le plan des (z, y) suivant une autre
cubique ayant pour équation:

Bay (x ) + pP =10 -

(Cest une cubique [2°, @], dont les trois asymptotes sont concou-
rantes. Dans D’espace, la cubique-section a donc aussi trois
asymptotes concourantes.




180 M. WINANTS

70. — Coupons maintenant la surface par des plans paralléles
aux plans coordonnés. Un plan paralléle au plan z o0z donne
une section représentable par les deux équations:

y==b, a? 4= 2P = pt— 3 (C)

Nous avons étudié cette courbe (64). C’est une cubique ayant
pour asymptote la droite d’équations: :

ry==b, x4z =0 &
Le lieu géométrique de toutes ces asymptotes est le plan:
x4+ z2=0 .

Supposons que les axes aient la disposition habituelle: les cotes
sont comptées positivement vers le haut. Alors la courbe (C)
est située au-dessous ou bien au-dessus de son asymptote suivant
que la constante & est plus grande ou plus petite que p. Pour
b = p, on trouve une droite d’équations: y = p; z + z = 0,

Cette droite rencontre 1’axe Oy (A C).

Il'y a deux autres droites analogues, conformément a la Symé-
trie autour du A3. Ces trois droites appartiennent a la surface,
et forment un triangle équilatéral.
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71. — A tout systéme de valeurs de deux des coordonnees
correspond une et une seule valeur réelle de la troisiéme.

Les plans coordonnés coupent la surface suivant trois cubiques
égales, que nous appellerons sections principales.:

z=10, y3 4 3= p?; (1)
y=20, .1:3+z3:p3 ; (2)
=0, 4 yd=ps . (3)

On pourrait engendrer la surface de la maniére suivante:
une cubique, analogue & (2), se déplacerait parallélement a
’axe Oy, tout en se déformant d’une facon continue, et en s’ap-
puyant sur les deux courbes fixes (1) et (3).

72. — Soient X, Y, Z les coordonnées courantes. Le plan tan-
gent en z, ¥, z, a pour équation:

22X 4+ 2Y 4 222 = p* .

Les coordonnées du point A sont: — p, + p, -+ p; le plan

tangent en A, est donc représenté par I’équation:
X+Y+Z=p.

Le plan A B C est donc un plan tritangent; les trois points de
contact sont A, B, C.

Cette singularité est conforme a la symétrie.

73. — Supposons que ce plan tangent singulier soit rendu
horizontal; Paxe ternaire est alors vertical. De I'ombilic comme
centre, dessinons un « cercle géodésique », de tres grand rayon:
sur toutes les géodésiques issues de ’ombilic, portons une lon-
gueur égale a H0p, par exemple. Les extrémités de toutes les
lignes obtenues forment une courbe fermée qu’on nomme cercle
géodésique. Cette courbe fermée fait songer & des montagnes
russes. Un mobile qui la parcourrait entiérement, ferait trois
montées et trois descentes, conformes a la symétrie autour du
A3 et par rapport aux trois plans P.

74. — Passons enfin a ’étude de la courbure totale. En appli-
quant toujours la méme formule (43), on trouve:

. hpdayz
(2t 2t 4 =4

Le long des sections principales (71), la courbure totale est
donc nulle. Lese sections principales décomposent la surface
en sept régions, comme un triangle dans un plan (9): dans quatre
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de ces régions,la courbure totale est positive; dans les trois autres,
elle est négative.

L’ensemble des trois sections principales constitue le lieu
géométrique des points paraboliques.

Tout ceci est conforme & la symétrie.

§ 4. — De nouvelles cubiques planes.

75. — Dans les deux paragraphes qui vont suivre, nous donne-
rons moins de détails que dans les deux précédents.
Examinons d’abord la cubique plane:

2y 4 er? 4 Fa = p?, (1)

ot ’on peut supposer p > 0. L’hypothése ¢ =0 nous ramene a la
cubique [59, ¢]: 2%y = p%, que nous avons indiquée plus haut (26).

$ il Bt 18 R B Biok Tee

4 N—" J g\\ /,/
7 -
/[- y LD
H
Fig. 11. Fig. 12
‘ 4
D

Fig. 14.

Fig. 11: 3¢® = 4p* . Fig, 12: 0 < 3¢* < 4p* .
Fig. 13 : 3¢® > 4p* . Fig. 14: ¢ < b .
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76. — Cette cubique, quelle que soit la constante ¢, est tan-
gente & la droite de Iinfini, et admet 1'axe des z comme asym-
ptote. Rencontre-t-elle les axes coordonnés ? L’hypothesey = 0
entraine:

)3
xr = —15— >0 ;
C

donc la courbe rencontre toujours son asymptote a distance
finie, une seule fois, & droite de I'origine (A). De méme, z = 0

donne:
3
T:j:\/k—;
* ¢

la courbe ne rencontre pas I’axe des y quand ¢ est < 0 (fig. 14);
dans le cas contraire (fig.11,12,13), elle le rencontre en deux
points (B, C) symétriques par rapport a Dorigine. Quand ¢
est < 0, la cubique ne possede aucun point dans l'angle des
axes ot les deux coordonnées sont négatives (fig. 14).

En résolvant ’équation (k), on trouve:

2y = — 2 1 Vﬁj— hedx —1——44cp3 : (1)

2ry = — ¢t = Yt 4 hpty — Aot (2)

On en conclut existence de deux coniques diamétrales, conju-
guées aux cordes asymptotiques:

2?24+ 2¢cy =0 parabole ;

22y + ¢2 =10 hyperbole équilatéere.

77. — La cubique peut-elle admettre un point double & distance
finie ? Pour qu'il en soit ainsi, on doit avoir simultanément:

f= aty + e + fae — pP =0

O of

k-[::2,1')'—}—(;2-:_0; i:xz—{—?cy:().

d ‘ oy ‘
Les deux coniques diamétrales doivent donc se couper sur la
cubique. En éliminant z, y entre les trois équations précédentes,
on trouve : 3¢® = 4p% On obtient alors la cubique crunodale,

que représente la fig. 11 (page 182). C’est une cubique [4°, c].
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78. — Discutons d’abord la formule (2). La quantité subra-
dicale est un polynome du troisiéme degré, qui ne doit prendre
que des valeurs positives. Le coefficient de y® est — 4c. Quand
cest > 0,1l y a donc un maximum pour y; on sait, en effet, que,
pour des valeurs de la variable, de module suffisamment grand,
tout polynome a le signe du terme ot 'exposant de la variable
est le plus élevé (fig. 11, 12, 13). Quand ¢ est < 0, 1l existe un
minimum de y (fig. 14).

Le polynome dont nous nous occupons, peut d’ailleurs s’écrire:

3 .3
/ 3 P .
— ¢ —_y — ).
<) C : "i>

Le discriminant de la parenthése est:

AN MNP Je® + 12¢%p? 4 16p°
B 2 = B T A X s e

St I'on raisonne comme pour le trinome du second degré, 1’on
arrive aux conclusions suivantes:

100 <3¢ < 4p®: y admet un minimum et deux maxima
(fig. 12); |

20 3¢® > 4p®: y admet un seul maximum:

3% ¢ < 0: y admet un seul minimum.

79. — De la formule (1), page 48, nous pourrons déduire
quelques résultats analogues. Soit f (z) le polynome subradical.
L’équation . '

fl) = at — 432 + 46p3 =0

admet au moins deux racines imaginaires {théoreme des lacunes).

Quand ¢ est < 0 (fig. 14), 'équation a deux racines réelles, de
signes contraires, entre lesquelles I’abscisse variable ne peut pas
étre comprise.

Supposons que ¢ soit > 0. Si deux racines sont réelles, elles
sont positives (Théoreme de Descartes). Cherchons quand ce
dernier fait se produit: le minimum de f () doit étre négatif.
-Or on a:

ffle) =4(x® — ) =0, d’ont X

i
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quand les deux racines sont réelles, elles comprennent ¢ (Théo-
réme de Rolle); ensuite:

[Mlx) = 12t 5 [(c) = 122 =5 0 3
[le) = ¢* — bec* 4 bep?
== — ¢[3e* — 4p?) .
Dans le cas des fig. 11 et 12 (page 182), le minimum de f (z) n’est
pas négatif; abscisse  peut varier de — o a + . Dans le

cas des fig. 13 et 14, il existe un intervalle ou la variable ne
peut pas entrer.

80. — Voici les coefficients angulaires de quelques tangentes:
of
0X 2y + ¢”
m == — o S —
of x? + 2¢)
oy
2 .6
m :~—~c?:: ——£—6<O 3
'a P
(,'4
. Lz I c‘.’ &
Mpe™= " 7 5 T T onend & 0.
-+ 2¢ P “ve

les tangentes aux points B, C, se coupent sur Iasymptote.
Remarque. — La parallele menée a I’axe des y, par le point A
rencontre la courbe en un point D, de coordonnées:

81. — Résumons ce qui précéde dans un tableaun synoptique:
¢ < 0: unipartite non singuliére [2°, c];

¢ — 0: cuspidale [5°, c];

0<e<Lp \/ : bipartite [10,‘0];

Il

3 /)7 ‘
c—=—7p \/g : crunodale [49°, c];
c>p \/% : unipartite non singuliére (20, c].

La recherche des points d’inflexion nous entrainerait trop loin.
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82. — Passons a la cubique:
ﬁ27+-72a—|—a2ﬁ:m3k (1)

Elle va nous fournir 'occasion d’appliquer I’un de nos principes
généraux (Chapitre III).

D’apreés ce qu’on a vu plus haut (62), cette cubique admet trois
asymptotes, que nous allons, tout d’abord, rechercher.

Par le sommet A, on peut mener
trois droites asymptotiques, dont
une seule pénétre a l'intérieur du
triangle de référence; soit 5 = rf
son équation; r est > 0 le systéme:

By + o+ 2B = m? v=rfB,
a—{—ﬁ—l—-y:bﬂ.

doit admettre des solutions infinies.
Fig. 15, On élimine « et y; on trouve une
equation du troisieme degré en (3;

on doit annuler le coefficient de 3°; il vient:

Fir)y=r—3r—1=20; (2)

cette équation admet une et une seule racine positive (Théoréme
de Descartes): son discriminant est:

127 8 _
PR AN

les trois racines sont donc réelles; il fallait s’y attendre.

La racine positive est supérieure a I'unité, car F (1) < 0.
Cette racine est indépendante de m.

83. Nous allons effectuer une transformation des coordonnées
trilinéaires absolues. Menons les trois droites:

7:rﬁ;‘ &= Py | B=ra.

Elles déterminent un triangle équilatéral A'B'C/, que nous pre-
nons comme nouveau triangle de référence. Dans le « Cours de
Géométrie analytique plane» de Falisse, 7¢ édition, revue et
augmentée par A. Gob, Bruxelles, 1912, a la page 578, au n° 735,
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on donne une formule qui exprime la distance ¢ d’un point de
coordonnées a, 38, v, & la droite que représente I’équation:

Suo = wua + v 4+ wy=20;
a savoir:

¥ — 2Luv cos C
Les angles du triangle primitif sont:

A—B—C=—560°;
donc:

A—Jl(d

o7

V Yu — N iy

Le coté B'CC a pour équation: r|

il vient:
/ — I‘ ﬁ —— ‘,r/,,,, R _.A.I_;_é____:’j PR .
V P2 M—{—W“l 4 V2 + ;:A—|—' 1

Posons
= '\/1*2 -+ r 4+ 1 = constante positive ;

|
l

il en résulte:
r— g9 =—ca , ry —oa=:<b", ro— B = ¢y

En résolvant ces trois équations, on trouve:

‘ (?" <7‘/ + ﬁ/ __I_ r?,}/) .

C)O‘ @
~

€ P ’
B= o (e )
a + r? ﬁ’ + ry)

On substitue ces valeurs dans I’équation (1), et 'on obtient

ri2r 4 1)@t 4 B 4 3+ 6afy)
+ 307 3 NIy + Ly + e 4 9o + PP+ af)

9m’1"’
3

g

On a tenu compte de I’équation (2). On a supprimé les accents,
devenus inutiles. |
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La cubique a donc trois axes de symétrie ordinaire: ce sont
les bissectrices intérieures du triangle A'B'C’. Ces axes ont une
direction qui ne dépend nullement de m.

84. — On peut simplifier la derniére équation. On a:

R = (a 4 B + ) = Za3 3B + 68y

d’ou 'on tire:

3X2°B = h* — (Xa® -+ 6afy) ;
Péquation de la cubique peut enfin s’écrire:

3 3 o3 i —_ L3 2

2 4 B P+ bafy =k Z0

85. — Recherchons les asymptotes. D’aprés ce qui précéde,

1l existe une asymptote paralléle au nouveau coté B C.

o — constante .
En combinant les deux équations:
‘63—1—73—}—60&;97:/53——&, ﬁ~|—7:h—-m, (J)

on obtient:
(h — o) [(h — ) — 3By] + 6afy = i — &

Le coefficient de £y est:
—3(h —a)F+ba=23Ba—h)=0 .

Les équations des asymptotes sont done:
h h h
37 P=gi 1=3.
La cubique a donc trois asymptotes
concourantes.

86. — Comment la cubique ren-
contre-t-elle les cotés du triangle fon-
damental ? Si, dans les équations (J),

on suppose a = 0, on obtient:

h(h?—38y) =k, don fy= _’i_;;l L

mais:

ﬁ—f—’/:h.
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Les coordonnées (3, y, sont donc racines de I’équation:

5 __ /3
:2——h:+h ~~/:0, (1)

3h

dont le diseriminant est:

T h3 — /3 _ 43 e P

3h 3h

La cubique est tangente aux c6tés si 'on a:

87. — Quand la cubique passe-t-elle en P ? I1 faut que

I’équation (1) ait la solution z = = . Alors:

=

*)
9

On peut vérifier directement que, dans ce dernier cas, la cubique
dégénere en un systéme de trois droites:

3

oc:‘—{—ﬁg—}—'y?’—}—ﬁocﬁ'y:/ﬁ‘:—g :—;—(a—{—ﬁ—}—'ﬂ:;,
ou
3(0% + B 97 + Bofy) — (- B+ =0,
ou encore:
(2a—~ﬁ—ﬂ/)(?ﬁ—'y—a)(?y—a——ﬁ):o, c. q.f. d.
Mais .

20 — B — 9y =3a — h ;

On a donc trois paralléles aux cotés du triangle fondamental,
m~nées par son centre.

88. — La cubique est circonscrite au triangle A B C, sil’on a:

. ,e s . h®
kE® = h®; elle rencontre les trois cotés si k* > 75 elle ne les

. o h?
rencontre pas s1 £ < 7. Quand elle les rencontre, c’est en des

points pour lesquels on a:
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En mettant & part le cas de la dégénérescence, on a toujours
affaire & une cubique [2°, a], qui satisfait aux regles de la symétrie
autour d’un A® (62).

89. — Donnons un tableau-résumé de la discussion qui préceéde:

k® > h®: Rencontre les prolongements des cotés. Chacune
des trois branches entoure une région hachurée;
k* = h® : Circonscrite au triangle ABC;

< k® < k3 : Rencontre les cotés (entre P et C);

=~
&

s

k3 — -= : Trois droites concourantes (dégénérescence);
h3
— < k* < + : Rencontre les cotés (entre P et Q);

k® — - : Tangente aux trois cotes;

l 3 o,
B < i. : Ne rencontre pas les cotés.

Toujours trois asymptotes concourantes.

{ 5. — Une deuxiéme surface.
90. — Nous allons esquisser une théorie de la surface:
y2z 4 2t 4 xfy = p? . p >0

Elle admet certainement un axe de symétrie ternaire, d’équa-
tions:
Elle ne rencontre aucun des axes coordonnés, ne pénetre pas
dans le triedre ou les trois coordonnées sont négatives. Elle
coupe les plans coordonnés suivant trois cubiques [3°c], ana-
logues a celle que nous avons étudiée plus haut (26, 75):

w1, yiz=p?
y =20, 2 = p?;
3 =0, why == p
91. — Un plan paralleéle a I'un des plans coordonnés (z = c),

fournit, comme section, la cubique:

a2y + ¢y + Fxe = p?,
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que nous avons discutée (81). En faisant voyager le plan sécant,
en laissant varier ¢ de — o0 & - w0, on engendre la surface par
le déplacement continu de la section, ce qui permet d’en avoir
une premiére idée assez claire. |

Z

/
K

>

Z

Fig. 17.

Un plan perpendiculaire au A® (27) donne une cubique uni-
partite non unicursale, a trois asymptotes concourantes (82,
84, 89). Les directions asymptotiques de cette courbe restent -
invariables, quand le plan sécant se déplace (82, 83). Le lieu
des asymptotes se compose de trois plans qui se coupent suivant
le A% Du tableau-résumé du n°® 89, on déduit que la surface est
hémimorphe (63, 68).

92. — De I’étude que nous avons faite de la derniére cubique
(83), résulte encore la propriété suivante: Les trois plans des
asymptotes forment des diédres dont les trois plans bissecteurs
sont des plans de symétrie de la surface.

I’axe ternaire rencontre la surface en un seul point:

.17:)":::
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celui-ci n’est pas un centre, car si ’on y transporte l'origine des
coordonnées, I’équation de la surface devient:

2
() ()=

et cette équation renferme un terme de degré pair et deux termes
de degrés impairs.
La surface posséde bien la symétrie de la tourmaline (63):

A, 3P .
93. — En z, y, z, le plan tangent a pour équation:
(224 2x) X 4 (4 2p3) Y (3 + 2zx) Z = 3p* .

Au point ou la surface rencontre son axe de symétrie, le plan
tangent a pour équation:

X4+ Y4+2z=pVy.

Le point de contact est done un point ordinaire (19), et, par consé-
quent, un ombilic (62).

94. — Signalons enfin trois points de coordonnées simples,
appartenant a la surface:

—P- PP P —p.pPi p,p, —p.
En ces trois points, les plans tangents ont pour équations:
XN—3Y +Z+43p=0;
X+ Y—3Z+3 =0
—=3XN 4+ Y+ Z4+3p=0.
Ces trois plans tangents se coupent sur I’axe ternaire.

95. — Une discussion, semblable aux précédentes, prouverait
que les équations:

a4 =0 g‘2z+,:2x—{—x2y:0,

représentent des cones rhomboédriques, ayant done la symétrie
du spath d’Islande:
C, A%, 3A%.
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