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172 M. WINANTNS

N 2. — Une surface ayant la symétrie d'un cube.

54. — Nous allons nous occuper de la surface:
at oyt =t
Elle est extérieure a la sphére:
X2 4 Y2 Z2= p?

sauf qu’elle la touche aux six points ou les deux surfaces coupent
les axes coordonnés (qui sont rectangulaires).
La forme méme de I’équation montre que la surface admet la
symétrie du cube:
C, 3A*, 4\3%, 6A% |
3P, 6P’

Les axes quaternaires de symétrie sont les axes coordonnés;
et les plans P sont les plans coordonnés. Les axes ternaires ont
pour équations: x = ==y = -+ z. Les axes binaires sont les
bissectrices des angles que font les axes coordonnés; et les plans P’
bissequent les diédres coordonnés.

55. — Les points ou cette surface est rencontrée par ses axes
ternaires et ses axes quaternaires, sont des ombilics (21). Nous
allons essayer de le vérifier par un calcul direct. Nous avons
rappelé plus haut (22) les équations auxquelles doivent satis-
faire les coordonnées des ombilics:

02z a2 = d%z
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Pour la surface actuelle, calculons les dérivées premiéres et
secondes de z. On a:
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De ces équations, on tire successivement:
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Les équations aux coordonnées des ombilics sont done:

.7'2(.1‘4 + :»l) . _T";‘Tg ‘,‘.2(‘)‘4 _+_ :4‘)
Q,G + :_G - 1.?.9.3 _TB + :6 ?

¢’est-a-dire: 22 = y? = 7%

Cette méthode semble ne donner que les extrémités des axes
ternaires. Mais, & un certain moment, on a simplifié par une
puissance de z. D’ailleurs, les ombilics, extrémités des axes
quaternaires, ont, chacun, deux coordonnées nulles. Il peut done
arriver que notre méthode 'emporte sur la méthode classique.

Nexiste-t-il pas d’autres ombilics ? Une transformation des
coordonnées rectilignes fournirait la réponse a cette question.

56. — La courbure totale (43) est ici:
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Par raison de continuité, cette formule s’applique également
aux points ou la surface rencontre les plans coordonnés.

La courbure est ordinairement positive; mais elle s’annule
tout le long des trois sections principales. Cette propriété est
entierement conforme a la symeétrie.

§ 3. — Une surface quadratique.

57. — 1l va s’agir de la surface:

at a4 -4 .
- + =1, ou Ton
suppose a == c. Cette surface n’est pas de révolution; elle” est

extérieure a l'ellipsoide de révolution: ﬁ;f ~~~~~~ + =, =1, sauf

(’:ik

qu’elle le touche en six points (52).
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