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et, à cause de (43) :

D=ïfeV
i= 1 \7 i—\,ij

or, toutes les quantités (———^ sont positives, jusqu'à la valeur
WW / i \k n— 2 ; seul, le signe de la dernière de ces quantités, *

est encore inconnu; la formule (44) le détermine, puisque le

signe de D est déterminé. On définit ainsi complètement la direction

positive sur le dernier axe gn du n-èdre rectangle qui

accompagne (lPl).
Remarque. — Il est évident qu'on pourrait étudier la courbe

C au moyen des représentations sphériques des n arêtes du

tt-èdre attaché au point Pls soit pour le cas général de (1^),
soit pour le cas fondamental de (lg-J. Cela reviendra encore à

porter, sur chaque axe du 72-èdre rectangle mobile autour de

l'origine, un vecteur-unité (1#). (Nos 5, 7, 8.)

SUR LES FORMULES DE LORENTZ

PAR

B. Niewenglowski (Paris).

Je me propose d'établir les hypothèses nécessaires et
suffisantes pour conduire aux formules de la relativité restreinte.

Je conserve les notations de M. E. Picard dans sa très
intéressante Notice de l'Annuaire du Bureau des Longitudes pour
1922. La droite X'QX glisse sur la droite xOx avec une vitesse
constante c; ces deux droites sont de même sens. Un observateur

est lié à chacune de ces droites; il y a pour chacun d'eux un
temps local: t pour l'observateur fixe, T pour le second. On

suppose t T — 0 quand û coïncide avec 0. Un même point
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M pris sur Taxe des x a une abscisse que le premier observateur
évalue en nombre x; le même point considéré comme appartenant

à Faxe X'QX a pour abscisse X, d'après le second
observateur, et cela à l'époque t pour le premier T pour le second.
Nous admettrons qu'une même longueur étant mesurée par
un observateur mobile verra sa mesure multipliée par un coefficient

a par l'observateur fixe. Gela posé, on a

öü + ÖM ÖM

Pour le premier observateur : 0£2 vt, DM «X, OM x
donc

vt + aX x (4)

Remarquons maintenant qu'on peut laisser le second
observateur fixe, à condition que la droite xOx glisse sur X'ûX avec
la vitesse —o; dans ces conditions le second observateur écrira:

v'Y -f- X — olx (2)

Acceptant la collaboration des deux observateurs, nous
regarderons les équations (1) et (2) comme simultanées; en résolvant
le système de ces équations on trouve

X T + (3)

ou, si l'on préfère:

(3')

Pour déterminer le coefficient a, nous admettrons qu'il existe
un phénomène physique se traduisant par l'égalité des vitesses
du point M mesurées par les deux observateurs, ce qui revient
à supposer qu'il existe un nombre c tel que l'on ait:

cdt — dx cdï dX (4)

En difîérentiant les équations (1) et (2) et tenant compte des

relations (4) on obtient

(c — v) dt — ca d'Y

(c -f- v) d'Y z=z col dt
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d'où
c2 — v2 c2 a2

et par suite

*=\Ar?-
Nous aurons donc, enfin:

Si l'on suppose que c soit la vitesse de la lumière on aura les

formules de Lorentz.
Remarques. — 1° Si Ton adopte les formules (5) ou (5 on

doit accepter les équations (1) et (2) qui leur sont équivalentes

pour * \J1 — ^ •

2° Pour que les formules (5) ou (5') soient acceptables il faut

supposer v < c. On ne peut rien conclure de plus, de ce qui
précède. Pour établir qu'aucune vitesse ne peut surpasser celle de

la lumière, il faut invoquer d'autres raisons.
3° Des équations (5) ou (5') on tire:

c2 t2 — x2 c2 T2 — X2

et aussi,

d'où
c2 dT2 — dX2 — c2 dt2 — dx2

On en conclut que pour une translation constante de direction
quelconque on aura l'invariance définie par

c2 d'Y2 — dX2 — dx2 — dZ2 c2 dt2 — dx2 — dy2 — dz2
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