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et, & cause de (43):

i—=n—1

D“II(Z__J

1=

or, toutes les quantités (4— —«) sont positives, jusqu’a la valeur
D1, b1

k= n—2; seul, le signe de la derniére de ces quantités, ((_,# ,

n—1.n

est encore inconnu; la formule (44) le détermine, puisque le
signe de D est déterminé. On définit ainsi completement la direc-
tion positive sur le dernier axe g, du n-édre rectangle qui
accompagne (1,).

Remarque. — 11 est évident qu’on pourrait étudier la courbe
@ au moyen des représentations sphériques des n arétes du
n-édre attaché au point Py, soit pour le cas général de (1,),
soit pour le cas fondamental de (1,). Cela reviendra encore &
porter, sur chaque axe du n-édre rectangle mobile autour de
I’origine, un vecteur-unité (1,). (N°¢ 5, 7, 8.)
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PAR

B. Niewencrowskr (Paris).

Je me propose d’établir les hypothéses nécessaires et suffi-
santes pour conduire aux formules de la relativité restreinte.

Je conserve les notations de M. E. Picard dans sa trés inté-
ressante Notice de I’Annuaire du Bureau des Longitudes pour
1922. La droite X'QX glisse sur la droite 'Oz avec une vitesse
constante ¢; ces deux droites sont de méme sens. Un observa-
teur est 1ié & chacune de ces droites; il y a pour chacun d’eux un
temps local: ¢ pour l'observateur fixe, T pour le second. On
suppose t =T = 0 quand Q coincide avec O. Un méme point
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M pris sur ’axe des x a une abscisse que le premier observateur
évalue en nombre x; le méme point considéré comme apparte-
nant & 'axe X'QX a pour abscisse X, d’apres le second obser-
vateur, et cela a I’époque ¢ pour le premier T pour le second.
Nous admettrons qu’une méme longueur étant mesurée par
un observateur mobile verra sa mesure multipliée par un ceeffi-
cient & par 'observateur fixe. Cela posé, on a

0Q 4 QM = OM .

Pour le premier observateur : OQ = ¢, OM = «X, OM =z
donc
vt + aX — x . (1)

Remarquons maintenant qu’on peut laisser le second obser-
vateur fixe, a condition que la droite 'Oz glisse sur X'QX avec
la vitesse —¢; dans ces conditions le second observateur écrira:

vl 4= X = ax . 2)

Acceptant la collaboration des deux observateurs, nous regar-
derons les équations (1) et (2) comme simultanées; en résolvant
le systéeme de ces équations on trouve

& — v : R
x % vt T:'«t—l—(a ) X (3)
74 o
ou, s1 'on préfere:
X T T 1 — a%)X
e XA T )
o8 Yo

Pour déterminer le coefficient «, nous admettrons qu’il existe
un phénomene physique se traduisant par 1’égalité des vitesses
du point M mesurées par les deux observateurs, ce qui revient
a supposer qu’il existe un nombre ¢ tel que I'on ait:

cdt = dx cdl = dX . ' (1)

En différentiant les équations (1) et (2) et tenant compte des
relations (4) on obtient ‘

(¢ — v)dt = cadT
(¢c + v)dT = cadt
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d’ot1
2 — 2= c?al
et par suite 7
$'2
o == 1 — —
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X = 7—1_:77 ‘f, T — "“‘——;___i?, (5)
v? iy
\/1 o \/ -5
c” c?
ou
T ¢X
: ’ -
g t = = . (5')

Si Pon suppose que ¢ soit la vitesse de la lumiere on aura les
formules de Lorentz.

Remarques. — 10 Si 'on adopte les formules (5) ou (5") on
doit accepter les équations (1) et (2) qui leur sont équivalentes

- 9
(%
pour « = \/1 — 5

20 Pour que les formules (5) ou (5') soient acceptables 1l faut
supposer ¢ < ¢. On ne peut rien conclure de plus, de ce qui pré-
cede. Pour établir qu’aucune vitesse ne peut surpasser celle de
la lumiére, il faut invoquer d’autres raisons.

30 Des équations (5) ou (b') on tire:

22 — a? = 2712 — X2

et aussi,

d’ou
2dl? — dX2? == ¢2di®> — dx? .

On en conclut que pour une translation constante de direction
quelconque on aura I'invariance définie par

2d1? — dX? — dY? — dZ% = *dt* — dx® — dy? — d=? .
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