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152 G. TIERCY
de u,, u,, u, doit garder ses cotés proportionnels a trois nombres
>, m* n% on devra avoir:

Sty My Xty Uy X oy

o P)
m- n-

(le signe >< caractérisant ici le produit scalaire des vecteurs).

(Yest, comme on le voit, imposer au vecteur u, de satisfaire
a deux équations numériques. Ces équations étant du 2me degré
en u, on trouve comme solutions quatre directions de vecteurs
u. Bt si les nombres 2, m?, n? ont été pris proportionnels aux
produits des longueurs des arétes opposées du tétraedre, ces
directions sont perpendiculaires aux sections anti-paralleles des
faces, et nous retrouvons 1a seulement Iéquivalent du théoréme
plan de Bellavitis.

Décembre 1921.

SUR LE DEPLACEMENT D’UN POINT DANS L’ESPACE
A n DIMENSIONS
GEOMETRIE DU »-EDRE

PAR

Georges TiErcY (Genéve).

I. — On sait qu’en mécanique analytique, on peut ramener
I'étude du mouvement d’un systéme dans ’espace ordinaire &
Pétude du mouvement d’un point dans un hyperespace. Il n’est
donc pas dépourvu d’intérét d’examiner de trés prés les pro-
priétés des variétés a une dimension dans I’espace E,. Dans la
présente étude, on utilise la notion de vecteur de E,,.

On appellera vecteur V le systéme de n nombres réels:

P O

nous dirons que les vecteurs d’un ensemble sont indépendants
les uns des autres s’il n’y a entre eux aucune relation linéaire.

e
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Les n nombres d’un vecteur apparaissent comme les n pro-
jections, sur n axes de coordonnées, d’un segment de droite V.
Il en résulte que Pespace E, a n dimensions pourra étre envisagé
comme lensemble des vecteurs se déduisant linéairement de n
vecteurs indépendants. En réalité, on se meut dans le domaine de
I’algébre.

Désignons par V,, Vg, ..., V.. les n vecteurs indépendants ; et
 par (vr;) les n projections du vecteur V:: la condition d’indépen-
© dance s'écrit :

el 7 0

si alors on désigne par X un vecteur quelconque déduit des n
premiers, on aura:

- ou bien, pour les projections x; de X:

i=n

N
Tp = CiVEi o

=1

ot les 1, sont des nombres réels.

S'il arrive qu’un systéme de n nombres ne puisse étre déduit
linéairement de n systémes V;, on dira que ce vecteur est en dehors
de V’espace L,.

Les n vecteurs indépendants qui définissent un espace I,
constituent ce que nous appellerons la base de cet espace. Mais,
de cette base, on pourra déduire une infinité d’autres ensembles
de n vecteurs indépendants les uns des autres; et pour chacun,
de ces nouveaux ensembles, chaque vecteur se déduira linéaire-
ment du premier ensemble. Tous ces ensembles seront dits
équibases.

Nous supposerons connues les propriétés fondamentales de ces
systémes de nombres, nous réservant de revenir sur quelques
détails essentiels. En particulier, nous supposerons le lecteur
averti de tout théoréeme relatif a la composition ou ala décom-
position des vecteurs, aux cosinus directeurs d’un vecteur, a
I’angle de deux vecteurs, etc., etc.
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2. — Soit, dans E,, un vecteur variable OP,, dont les COmpo--
santes s’écrivent x; (i = 1, 2, ..., n). Supposons que les nombres
x; varient d’une facon continue; au bout d’un temps tres court,
le vecteur X est devenu (X + d X) dont les composantes sont
(z: 4 dz;); ce vecteur est le résultant du systéme z; et du systeme
dz;; nous dirons alors que Pextrémité du vecteur X a parcouru
un chemin, dont les composantes sont les quantités dx;; la lon-
gueur de ce chemin infiniment petit est donnée par:

ds? — de: .

Supposons que ce déplacement se continue pendant un certain
temps; dans chaque instant df, lextrémité du vecteur décrit
un petit chemin ds; an bout du temps ¢, nous dirons que le point
X a parcouru un arc s d’une courbe C.

Le nombre s ainsi défini est fonction du temps t; comme d’autre
part les composantes x; sont aussi fonctions de ¢, on pourra les
exprimer en fonction du nombre s.

Cela posé, considérons (n — 1) autres positions oP,, OP,, ...,
OP, du vecteur, voisines de la position OP,; les composantes du
vecteur OP,y, étant:

Ok)i =, + dw; 4+ d®x, + ... + d/fxl. .

Par le point P,, imaginons un vecteur unité (1,,), dont Porien-
tation varie, suivant une loi connue, en fonction du temps ¢ ou
de l’arc s de la courbe @. Les projections de ce vecteur (1p,): sont
fonctions continues de ¢; autrement dit, par P, passe une droite
(p4) dont les cosinus directeurs sont les quantités (1,,):- De cha-
cun des points P; part donc un vecteur unité déterminé; soient
(1,) ces vecteurs.

Par P, menons une paralléle h; & chacune des droites Pr; on
détermine ainsi ce que nous appellerons des éléments pseudo-
osculateurs; p, et h, définissent un plan pseudo-osculateur I1,;
Piy hoy by, ..., by, définissent un k-plan pseudo-osculateur 11,

Soit alors, dans II;, un point M quelconque; et soient &; les
composantes du vecteur OM. En appelant A,, les projections du
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vecteur P,M sur les & axes de II;, il vient:

m=kh

Ei == by + 2 Am (11),”)5 T

m=1
ce qui peut s’écrire sous la forme:

m=

. (m) .
Ezﬁ — &3 + E | an <1p1)i ’
m=1
les coefficients B,, sont évidemment les mémes dans les n rela-
tions &, &5, ...y &n
3. — Construisons maintenant le « n-édre n-rectangle » de
la courbe @, attaché au point P, et relatif a la direction (p,).
Pour cela, considérons:

f - te X . -
' dans I, une droite g, | a p, :

dans II,, une droite g, | a II, :

~

dans I-I,.,. une droite 8 L a Hh——l ;

Nous savons que cela est possible. Ces n droites (g, = p,, &,
..., g,) forment un n-édre n-rectangle; c¢’est le n-édre relatif a la
direction p,. Les cosinus directeurs des arétes de ce n-edre, ou
projections des vecteurs-unités portés sur ces arétes, seront
les systémes de nombres (1;);; pour £ = 1, on a:

(t)e = (py)s -
En-outre, on posera:

le n-édre n-rectangle relatif & (p,) est alors dit applicable
sur le n-édre de référence de E,. Et 'on connait la propriété
fondamentale du déterminant ci-dessus: chaque terme est égal
& son mineur.

4. — Nous nous sommes placés dans le cas tout a fait général
ou le vecteur (1,) a une direction quelconque. On passera sans
difficulté au cas le plus important, qui est un cas particulier:




156 . TIERCY

celui ou la droite (p,) se confond avec la langente (t,) en (P,); on
appelle tangente la droite passant par P, et portant le petit vecteur
dz;. Dans ce cas, les éléments pseudo-osculateurs en P, deviennent
les éléments osculateurs: et le n-odre rectangle attaché a P,
et relatif au vecteur (1,,) devient le n-édre principal.

5. — Prenons alors le cas du n-édre principal; et supposons
que le n-édre de référence soit la position initiale du n-édre
mobile attaché au point P, de ¢.

Considérons un n-édre auxiliaire, mobile autour de Dorigine
fixe, et dont les arétes soient données par les vecteurs (1).

Soit X' un vecteur OM rapporté au n-édre fixe; et soit =
le méme vecteur rapporté au n-edre mobile; on a les relations:

- ’ 1 | v N =
Ny = (lk}ig/f ; ‘\-:21/{5&:& . (1

Dérivons ces relations par rapport au temps ¢, les composantes
£ étant considérées comme constantes; il vient:

dXi"kin” d(1,), ,.
Al Sk dg |

A=l

et

Ces expressions donnent les projections de la vitesse du point
M considéré, sur les axes fixes: les projections de cette vitesse sur
les axes mobiles seront données par:

_ I=n d.\’l A
Vuz - 2 (1i)m de : (2
3 =1

Tenons compte des relations existant entre les cosinus direc-
teurs des arétes mobiles; et posons:

L~

L:ﬁn , d(li’h 3
Pin = 2 (1) - di S Prow = — Puyi s Phypn=10; (

=1
on obtient, a la place de (3), les formules:

f—=n

) £ 2
Vm — }lpm,k Skpoo (o)
ed |
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le déterminant des quantités ps, est symétrique gauche; nous
appellerons ces coefficients p;,, les rotations instantanées.

6. — Supposons maintenant que lorigine du n-edre mobile
se meuve en translation: et désignons par (4;) les translations
composantes par rapport aux axes mobiles. Dans le cas ou I'on
considére le n-édre principal, seule la translation (¢,) est diffé-
rente de zéro.

Soit alors le déplacement le plus général d’un point, mobile
lui-méme par rapport au polyedre mobile. Les projections de
la vitesse sur les arétes mobiles seront:

dr k=n
= *m
\I)l e - dt + tm + 2 /)/'I,If 5]; ; (6)

A==

avec, dans le cas principal:

= e g t.— 0, 1 £ 1

*i W
= (7)

qui s’écrivent comme suit dans le cas principal:

dx.

l

= s (8)
ou s’ est donné en fonction du temps ¢. On voit qu’on retrouvera
les coordonnées x; par de simples quadratures, dés qu’on aura
déterminé les vecteurs (1,) en fonction du temps.

7. — Reprenons les formules (6), et faisons-y les (£,) nuls;
¢’est donc le cas ou 'origine est fixe. Prenons comme vecteur =

le vecteur 1;; les équations (6) deviennent:

‘ hk=n
d(1,) —
0= dt + 2 pm,l: (11')/)1 : (9)

k=1

On a ainsi n groupes de n équations.
8. — Venons-en & la question suivante: Supposons que, d une
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facon ou d’une autre, on ait connaissance de s’ et des rotations
en fonction du temps; y a-t-il un mouvement correspondant a
ces données? .

Cela revient & déterminer les n? cosinus directeurs du n-édre
mobile; car alors, grace a (8), on aura les coordonnées z; du point
P,. Or, chacun des n groupes de n cosinus satisfait aux équations:

d(u)m
0= _dt T Epill,l{(u)m : (10) ‘

On vérifiera aisément la propriété suivante: si (u) et (') sont
deux vecteurs solutions de (10), les expressions

lew|? ROME et w u’ (11)

sont des constantes; il suffit de dériver ces quantités par rapport
a t, en tenant compte de (10) et de (4); les dérivées sont nulles.

Cette propriété permet de répondre par I’affirmative a la ques-
tion posée. Soit en effet un n-édre n-rectangle de méme dis-
position que le n-édre fixe; ses vecteurs-unités sont:

(ui) ) | (12)

Cherchons alors les solutions de (10) qui ont les valeurs (12)
pour valeurs initiales. Les expressions |u;|* et u,.u; étant cons-
tantes (expression 11) et valant respectivement 1 et O (valeurs 12),
on a chaque instant les vecteurs-unités du n-édre mobile.

La position initiale (12) est arbitraire; il y a donc une infinité
de solutions; au fond, c’est un méme déplacement, rapporté a
des n-édres différents. |

Conclusion: les fonctions s et p,.. étant données, il y corres-
pond un seul mouvement dans E,.

9. — Remarque : Quel est, par rapport au n-edre mobile, le
lieu des points de vitesse minima (si ce lieu existe) ?

Le vecteur = de chaque point est alors constant; on a:

fi=1 2

i=n
. X N
Vi = 2, [ti + Pin 51{] ;

=l h=1

i
1
i
|
i
3

T T Y
e
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égalant & zéro les dérivées de V2 par rapport aux lettres &, on
obtient les n équations homogeénes: '

h=n

N )V, =0, (i=1,2 ...n) . (13)

Si le déterminant de (13) est différent de zéro, la solution se
réduit & un point de vitesse nulle. Si le déterminant de (13) est
nul, les équations (13) se réduisent a (n — 1) équations distinctes
(les mineurs du déterminant n’étant pas tous nuls); le lieu est
alors une variété rectiligne.

Or, le déterminant A de (13) est symétrique gauche; si n est
pair, ce déterminant est en général non nul; si n est impair, il
est toujours nul. Si, exceptionnellement, A était nul, avec n pair,
le lieu serait une variété linéaire a plusieurs dimensions.

10. — Revenons au cas général du polyedre des (g:). Et défi-
nissons ce que nous appellerons courbures de la courbe C relatives
au n-édre des (g:), ou pseudo-courbures.

Appelons do; les angles de contingence formés respectivement
par les axes de méme indice de deux n-edres rectangles voi-
sins. Si ds est I’élément d’arc de @, la pseudo-courbure en P,

relative & p, = g, sera définie par:
. 1 dv ¥y
CERTL TV (14

1

de méme, la pseudo-courbure relative a g; sera définie par:

i !
LAy

(15)

dy, = 2 {d(li;,1112 = d{1}) ; (16)

d’ou Pon tire:
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On définit ainsi n pseudo-courbures pour € en P,; nous verrons
plus loin.les relations qui existent entre ces différentes cour-
bures.

Il suffira de supposer que (1,,) = (1,,) coincide avec le vecteur
unité tangent & © en P, pour obtenir les courbures principales,
c¢’est-a-dire les courbures relatives au n-édre principal.

11. — D’autre part, on a

£ = f : (18)

d’ou

(1). (1) =0 ; (19)
donc, le vectenr (1) est perpendiculaire & la droite g; du n-édre
relatif a p,.

En particulier, pour ¢ = 1, ¢’est-a-dire en considérant la droite
p. elle-méme, on obtient les formules

X b . e TR 1 9N
(]1' . (11) = O . C — 5H — 7 - (20}

Remarquons que le vecteur (1,) est, dans =,, porté sur la
droite g,; donc, on a:

d’ou:
R R
k= —! i (1,) = =5 (1,) . (21

S S

La relation (21) contient un premier groupe de n formules.
Dans le cas ou p, = g, est la tangente a @, on écrira, avec s
comme variable indépendante:

(o) = g4 (al) x (22)

c’est la le cas principal. Si on y fait n = 3, on retrouve le pre-
mier groupe des formules fondamentales de Frenet.

12. — Considérons maintenant les autres vecteurs du n-édre
rectangle attaché a P,; et cherchons a établir, pour chacun
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. . ) . 2L 5 .
d’eux, des formules analogues & (21). Celles-c1 peuvent s’ecrire:

(/1‘)) DO
1) = << (23)
TR
S/
les dérivées (1,)',1 sont done linéaires en (1:)m:
/I' s ¢ HD/’
(1, == Sﬁ A (1), avec A, = et A.—0 (12 . (23 )

e R, :
L- <?>
I1 est facile d’établir que toutes les dérivées (1), sont liné-
aires en (1), k ne pouvant dépasser (¢ -+ 1).
Remarquons tout d’abord que le vecteur (1,,) appartient au

(k + 1) — plan T by d’aprés la facon dont nous avons choisi

les vecteurs du n-édre rectangle en P, il vient la forme:

=P
1) =2 Bt 2%

i=0
en effet, le n-édre rectangle en P, est une équibase du n-édre
formé par les vecteurs (1,).

Supposons alors que la forme linéaire de (1;) ait été établie

jusqu’a la valeur ¢ de l'indice; et démontrons que la propriété
s’étend au cas de (1 + 1). On a par hypothese:

Par différentiations successives de (23"), on tire, & cause de

(25): ‘

h=i4-1

(i1 ~ ¢
(1) = E Ep(ly) (26)

h=1
relations d’ailleurs équivalentes aux équations (24). D’autre part,
’équation (24) donne, avec k = 1 + 2:

s=i+2
(1ys) = E By(1,)" ;

s=0

L’Enseignement mathém., 22¢ année; 1921 et 1922, . i
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portons dans le deuxiéme membre les valeurs (26); il reste le
dernier terme en (1,)"** ; on obtient la forme :

s=id1
Uopa) = D by + By (1)) (27)
s=0
Mais, en dérivant (26), on trouve justement (11)(i+2):
kh=iH+1
l] L+‘)J 2 F *__ 1j1,+1( L+1) . (28)
h=1
Portons cette valeur (28) dans (27); explicitant (1i+1)’, il
vient:
=it
14 1 3
Mi—{—l) S Qpl1y) - (29)

h=!

La forme (25) est donc vraie pour toute valeur de I’indice i;
nous écrirons plus en détail:

/{:i+l(1 )

| k "
(1:) = LS (30)
l 2 9ik.

k=1
et on sait que:

R,
(11’1 = et qu? — 7 .

13. — 1II s’agit maintenant de trouver la valeur des coeffi-

ments( ! )
Ta,

On a les relations connues:

| [1,12=1 et (1,). (1) =0,
d’ou 'on tire:

(1;) .

(1)) = et (1,)". (lk)_-‘_ (1,0 (1) =0
avec les relations (30), on obtient immédiatement les égalités:

=0 g9,=—q; (=] ; (31)
9i.i

le déterminant des quantités <—~1—

; > est donc symétrique gauche.
%,
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Or, nous avons établi (formule 30) que le deuxiéme indice ne
peut dépasser le premier de plus d’une unité; il résulte alors de
(31) que le deuxiéme membre de (30) se réduit & deux termes:

L) (L)

) =— =} ; (32)
’ 9i1;  Diita

. 1
lorsque ¢t = n, on a: = 0.
qn‘n—}-l

Il reste donec a déterminer la valeur de deux coefficients. Pour
cela, partons des définitions (15) des pseudo-courbures et rayons
de courbure:

Py N B 9 1) \ o
i R, T |5 RSP o2
a cause de (32), on trouve la formule de récurrence:
5 1 1 12
; 1; = P + 2 — Tz
Ti—1, bii41 R;
1 5’2 1 34)
3 = T 7 i34
[TER] R; Y e 1,
On a donc finalement:
1 9 1 h=1 1
S = / -
T:—}?; S s gl (— 1) k—z—,
(/]12 1 (/iaia+l k=i R
1 h—1 . . (35)
- = §'? E (— l)"‘“l—"h——g = Sz :
‘ I n—1 ,n h—=—n—1 Rh Rn

On connait ainsi tous les coefficients des formules (32); (voir
encore les paragraphes 14 et 16).

La derniére formule (35) montre que la n¢ pseudo-courbure
dépend des (n — 1) pseudo-courbures précédentes:

o (36)

Remarque : Dans le cas ol (1,,) est le vecteur-unité tangent &
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la courbe @, on écrira p au lien de R; ou bien, en désignant par
:Ci les courbures principales:
k=1
2 _ E: ,- n—1— ~* |
C (— Il) t(“h ’

(37)
k=n—1

on retrouve la une formule donnée par Hoepe ! et CEsaro 2

14. — On a donc en définitive les relations suivantes:
/ 1 1 X
— =0 ; —4—:—?—; ! =0 ;
{/1,1 ql,z R1 ([n,n-H
f=1 (38)
1 Q) 1
=+ s ( 1}%‘/' R
9ii41 - L ¥

ou Pon a choisi le signe (4) pour le radical, ce qui correspond &
la direction positive sur les axes g.. Pour le dernier coefficient,

par contre, on a:
g

1 s
=*x 2 el =2 (39)
R R,

q
/n——l,n —— L

1

nous indiquerons au n° 16 comment décider entre les deux signes.
Pour simplifier I’écriture, posons maintenant:

1 1

941 i

les formules (32) deviennent:

() ()
(1) = — 55— + 11+ : (40)
i—1 )
avec
1 1
T — et T = O
11 Rl 1:2

Rappelons que, réciproquement, connaissant tous les vecteurs

1 HopPE. Archiv der Math. u. Phys., 1888.
2 CESARO. Natiirliche Geometrie, Leipzig, 1891.
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(1;) en fonction du temps, on trouvera vite la courbe du point P,
(voir § 0). '

15. — Passons au cas remarquable ou (1,,) est le vecteur tan-
gent & €. On a pour le vecteur-unité tangent:

[al)/n: d; — /;

m=n
l 2
tcl 1 m T ’
¢ m=l1

done o, est connu. La formule (22) donne alors, avec t comme
variable: |

d’ou:

7

S . (0(2) — 1 (11)/ )

-O

.\ .., ~ b 3 %
le deuxiéme vecteur-unité est donc connu. Cela permet d’obtenir
la deuxieme courbure principale:

(:xz}’ i

s <,
2

D’autre part, les formules (40) deviennent:

% ) ey q)
= — il ) 1407)
“i—1 k2
avee
1 S, 1 1 ~ l—ll
=, — =0, et — = ¥ }- —3
"1 “ “n L h—:

on aura donc tous les 7, et partant tous les vecteurs-unités du
n-edre mobile (réciproque, voir § 6).

Si, dans ces formules, on fait n = 3, on retrouve les formules
fondamentales de Frenet.

16. — 1II reste a fixer le signe du radical de la formule (39).
Etudions le déterminant:

D = |[(1,), (1,0 (1) ... 1 =1

l)m‘ l}m( l)m e (1 m P oo
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il posséde un signe bien déterminé; les différents termes en sont
donnés par ’expression (26):

écrivons-la comme suit:

fr=t—1

J o
- 2 By, (1, + (1, ;

; (1)
h=1

une nouvelle dérivation donne la forme

fi==¢
) =N 4y, 11,) + B (1,
h=

et, si Pon tient compte de la formule (32), on trouve pour le der-
nier coefficient, E;, la formule de récurrence:

1
E =L —): (42)
T ‘(‘/i,z’+1> |
Or, on a':
1 1
ﬂl frm— '(___" et E2 - (—**'f"* s
112 /1.2 (/2,3
d’ou pour E;:
1 1 1
E,im (43)
(/1.2 (/2 3 (/Z—l,i

Portons les formules (41) dans le déterminant D: combinant
linéairement les colonnes, il vient ’expression

o= (TT) o= TD.

i=1 =1

1 / la)’

™ ; ) H puis (11)" = *m) {12} 4 (2’

1,2 2

or: (lg) = — Ay + (13) a cause de (32);
q1,2 92,3

_,.

donc finalement :

( )“2)+-— A L
12

71,2 92,3
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et, & cause de (43):

i—=n—1

D“II(Z__J

1=

or, toutes les quantités (4— —«) sont positives, jusqu’a la valeur
D1, b1

k= n—2; seul, le signe de la derniére de ces quantités, ((_,# ,

n—1.n

est encore inconnu; la formule (44) le détermine, puisque le
signe de D est déterminé. On définit ainsi completement la direc-
tion positive sur le dernier axe g, du n-édre rectangle qui
accompagne (1,).

Remarque. — 11 est évident qu’on pourrait étudier la courbe
@ au moyen des représentations sphériques des n arétes du
n-édre attaché au point Py, soit pour le cas général de (1,),
soit pour le cas fondamental de (1,). Cela reviendra encore &
porter, sur chaque axe du n-édre rectangle mobile autour de
I’origine, un vecteur-unité (1,). (N°¢ 5, 7, 8.)

SUR LES FORMULES DE LORENTZ

PAR

B. Niewencrowskr (Paris).

Je me propose d’établir les hypothéses nécessaires et suffi-
santes pour conduire aux formules de la relativité restreinte.

Je conserve les notations de M. E. Picard dans sa trés inté-
ressante Notice de I’Annuaire du Bureau des Longitudes pour
1922. La droite X'QX glisse sur la droite 'Oz avec une vitesse
constante ¢; ces deux droites sont de méme sens. Un observa-
teur est 1ié & chacune de ces droites; il y a pour chacun d’eux un
temps local: ¢ pour l'observateur fixe, T pour le second. On
suppose t =T = 0 quand Q coincide avec O. Un méme point
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