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SUR CERTAINES IDENTITÉS GÉOMÉTRIQUES
ET LEUR TRADUCTION ALGÉBRIQUE

1>AR

P.-C. Delens (Le Hâvre).

Je me propose ici de montrer les avantages des algèbres
géométriques comme intermédiaires entre le raisonnement direct
et le calcul analytique. Certaines de ces méthodes s'appliquent
particulièrement à l'étude des systèmes articulés plans et gauches
et ont déjà été employées avec succès dans ce sens. Je reprends
une question traitée par LaiSant et M. Fontené dans les
Nouvelles Annales de Mathématiques (années 1899, 1917), tant
par le calcul des quaternions que par la géométrie, et dans le
but de rapprocher les deux méthodes. Il s'agit de l'extension
au tétraèdre du théorème de Bellavitis sur le quadrangle
plan.

Soit un tétraèdre abed; en employant le quaternion comme
bi-radiale je forme le bi-rapport:

ca

i 7\ cb /ca\ {da\~x
{abcd}iâ [rb){di,ch~K dh 1

•

db

les facteurs étant ordonnés, (ca, etc. désignant des vecteurs, et
même des vecteurs quaternions de Hamilton dans le dernier
membre de l'égalité.)

Soit maintenant efg une section anti-parallèle de bed par
rapport à a sur le tétraèdre; sur la face aèc, les vecteurs ef et

1 Cf. Gr. Kœnigs. Cinématique, p. 464.
1E Leveugle. Calcul géométrique, p. 107.
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cb sont anti-parallèles et on obtient, sur simple inspection de

la figure, l'égalité entre quaternions:

— K — (K conjugué de)
cb ef

De même sur la face abd:

da ea
dï) ~~ e~g

donc:

(abcd) — K ^

Evaluons de même le bi-rapport ):

(acbd) K
ef

Mais les vecteurs eg, g/, fe forment un contour triangulaire,
donc:

eg+ gf + fe 0 (1)

et par suite:

K^| + Vs. — — K —
ef ^ ef ef

Il en résulte que dans le calcul des quaternions comme dans le

calcul algébrique usuel, on conserve l'identité:

[abcd) + (acbd) 1 (2)

C'est cette identité qui, rapprochée de (1), traduit le théorème

de Bellavitis pour le tétraèdre. Avant d'en tirer quelques

conséquences, ajoutons quelques mots sur les propriétés du bi-rapport
(abcd). Une telle expression est un quaternion, soit 1, défini de

manière unique par son module, son angle d'ouverture et son

axe. Or il est facile d'exprimer en fonction de 1 les expressions :

(abcd) X (abdc)— i (acbd) 1 — X

f acdb)— (adcb) ^
(adbc) -
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qui représentent toutes les quaternions co-axiaux, et dont
1 interprétation est immédiate dans le triangle efg.

Si on évalue au contraire les expressions:

(bade) — [j. {cdab) — v (deba) — c

on trouve leur représentation appropriée dans les triangles
sections du tétraèdre par les plans anti-parallèles aux faces cda,
dab, abc, par rapport aux sommets opposés. Ces quaternions
ont du reste même module et même ouverture que 1 et de
chacun d'eux on déduit, comme précédemment, cinq autres
quaternions co-axiaux h En ce qui concerne l'invariance de la
forme du triangle représentatif d'un tétraèdre par rapport au
groupe des inversions, cela résulte de la constance du module
de 1 (ou [a, v, p).

En définitive, on a obtenu 24 bi-rapports vectoriels, formant
4 groupes de 6 éléments, groupes se correspondant par l'échange
de a en p, y ou p. Les propriétés usuelles des rapports anharmo-
niques ne sont donc pas toutes conservées pour ces bi-rapports,
mais celles qui subsistent traduisent des analogies entre ensembles

de 4 points de la droite, du plan, ou de l'espace.
On aurait du reste pu envisager d'autre manière l'extension

du rapport anharmonique, par exemple considérer
cb. da

ca.db.cb'.da~\ et établir les relations entre ces expressions et
les précédentes.

A noter encore que le quaternion 1 (abed) peut servir à
fixer dans l'espace la position d'un point par rapport-à un
triangle de référence abc.

Revenons à l'étude de la relation (2):

(abcd) -{- (acbd) 1 12)

ou:
ca cb * db da~A + ba bc~1 de da~l =z 1

Si le tétraèdre est aplati suivant un quadrangle sur un plan,
la démonstration donnée reste valable; mais entre quaternions

1 L'étude du mécanisme de M. Bennett (isogrom) (Cf. H. Bricard. Cinématique et Mica-
nismes, p, 159) se base directement sur ces remarques.
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eo-axiaux (ou opérateurs complexes), la commutativité de la

multiplication permet d'écrire l'équation précédente sous la

forme:
ab cd -j- ac db -{- ad be ~ 0 (°)

Ce n'est cependant pas sous cette forme (3), mais sous la forme

(2) qu'on peut généraliser le théorème de Bellavitis.
La relation (3), comme l'a rappelé M. Fontené, est une identité

algébrique entre vecteurs, à savoir:

(v __ + vj- _ ;r) -j- - (,r - j; 0

dès qu'on emploie entre les vecteurs une multiplication
distributive et commutative.

Or soit pq le produit de deux éléments — ici des vecteurs -—

dans une telle multiplication. Il résulte de l'oeuvre de Grass-

mann qu'un tel produit peut se ramener à une fonction linéaire
et homogène du produit « algébrique » (pq) des mêmes éléments.

L'opération de la division généralisée permet aussi de substituer
à ces produits des équivalences algébriques suivant un module
convenable. Ainsi Grassmann a défini dans le plan le produit
« complexe •>> de deux vecteurs, qui se peut traiter comme une
équivalence algébrique suivant le module (u2) + (e2), u et e

étant deux vecteurs unitaires rectangulaires (de même que le

produit des nombres complexes est une équivalence suivant
le module 1 + i2).

On confond trop souvent ce produit complexe des vecteurs
du plan avec le produit des nombres complexes, qui lui est
seulement isomorphe; l'exemple du théorème de Bellavitis va
encore montrer la différence des méthodes.

Deux produits complexes de vecteurs d'un plan, pq et p'q
étant égaux quand leurs produits algébriques (pq) et (pq) sont
congrus suivant le module (u2) + (o2), on voit que l'égalité:

pq p'q'
signifie :

1° les produits des modules des vecteurs p, q et //, q sont égaux
2° les couples de vecteurs p, q et p\ q ont même direction de

bissectrice intérieure, même direction de bissectrice extérieure.
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Dans le produit complexe ainsi défini, la multiplication est

commutative, le produit ne s'annule qu'avec un de ses facteurs,
la division est possible et unique. On peut donc définir, à partir
d'un vecteur m, un second vecteur u tel que:

par:

pq p qil' O. — i_ a — 1_ p// 7J ' Il 1

pq

\i1 Ü ' son^ a^0rs "es nombres (opérateurs) complexes mesurant
les rapports de p, q à un vecteur arbitraire w, choisi comme
unité dans le plan. Alors:

est le produit de ces nombres complexes.
Partons alors de l'identité (3), la multiplication étant

complexe. De
ab cd -J- ac db -j- ad be ~ 0 (3j

on déduit:
ab cd ac db ad bc

h 1 — 0 (\)a a a y

soit:
a1 -f- a2 -f u? =r 0

c'est-à-dire qu'à tout vecteur u du plan correspond, par rapport
au quadrangle abed,un contour triangulaire U formé des
vecteurs //,, //„, u3.

En divisant par u2les termes de (3) on obtient la relation
entre nombres complexes comme elle est habituellement
employée La relation (3) elle-même indique en outre que les
directions des bissectrices des couples de côtés opposés du
quadrangle forment une involution.

1 II est utile de remarquer que, réciproquement, toute équation entré nombres complexes,
rendue homogène, s'interprète comme équation entre produits complexes de vecteurs, parsuite de l'isomorphisme signalé.
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Enfin, comme évidemment:

ab cd ac db ad bc

ab cd ac db ad bc

a u H

ou:
ab cd ac db ad. bc

ut
—

u2
~~

u?>

et les égalités qui s'ensuivent entre modules et angles, le triangle
U reste semblable à lui-même quand u varie: c'est le théorème

de Bellavitis.
Si on développait un produit complexe analogue entre

vecteurs de l'espace, on aurait à considérer des congruences
géométriques suivant un module (u2) + (e2) + (ce2) (w, e, ce étant
3 vecteurs égaux, 2-à-2 rectangulaires).

Mais une égalité telle que:

pq —p'q'

ne serait possible que si les 4 vecteurs étaient coplanaires.

Autrement dit, une expression ne pourrait en général

représenter un vecteur, la division ne serait plus possible. De l'identité

(3) étendue au tétraèdre, car la multiplication reste

commutative, on ne pourrait en général déduire l'existence d'un
triangle U correspondant à un vecteur u. Ce triangle n'existerait
plus que pour des positions particulières de u. Nous allons
tourner cette difficulté.

Soit <f[(pq), u] une fonction linéaire et homogène à la fois

par rapport au produit algébrique (pq) et au vecteur et qui
représente elle-même un vecteur. Alors, en posant:

®[(ab cd) u] ux <x> [(«c db) «/] zu u2 ® {(ad bc) m] z= ?i3

l'identité (3) entraîne:

uj -}— i/0 —f- u2 ZU 0

Mais nous devons maintenant rendre la fonction précédente
apte à traduire des relations de similitude afin de retrouver le
théorème de Bellavitis dans le tétraèdre. Si le triangle U formé
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de un h2, u?> doit garder ses côtés proportionnels à trois nombres
l2, m2, n2, on devra avoir:

ui X Uy __ It., X «2 _ Us X us
l2 ni2 /r

(le signe x caractérisant ici le produit scalaire des vecteurs).
G est, comme on le voit, imposer au vecteur w, de satisfaire

à deux équations numériques. Ces équations étant du 2me degré
en u, on trouve comme solutions quatre directions de vecteurs
u. Et si les nombres Z2, m2, n2 ont été pris proportionnels aux
produits des longueurs des arêtes opposées du tétraèdre, ces
directions sont perpendiculaires aux sections anti-parallèles des
faces, et nous retrouvons là seulement l'équivalent du théorème
plan de Bellavitis.

Décembre 1921.

SUR LE DÉPLACEMENT D'UN POINT DANS L'ESPACE
A n DIMENSIONS

GÉOMÉTRIE DU ^-ÈDRE

PAR

Georges Tiercy (Genève).

1- — On sait qu'en mécanique analytique, on peut ramener
l'étude du mouvement d'un système dans l'espace ordinaire à
l'étude du mouvement d'un point dans un hyperespace. Il n'est
donc pas dépourvu d'intérêt d'examiner de très près les
propriétés des variétés à une dimension dans l'espace E„. Dans la
présente étude, on utilise la notion de vecteur de E„.

On appellera vecteur V le système de n nombres réels:

nous dirons que les vecteurs d'un ensemble sont indépendants
les uns des autres s'il n'y a entre eux aucune relation linéaire.
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