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APPLICATIONS GEOMETRIQUES

DE LA

CRISTALLOGRAPHIE

PAR

Marcel Winants (Liége).

INTRODUCTION.

On sait que la cristallographie fut créée, il y a plus d’un siécle,
par Haiiy. Tout d’abord, on ne la considéra que comme un cha-
pitre préliminaire de la minéralogie. Mais son importance ne
cessa de grandir; on peut aujourd’hui Penvisager comme une
science indépendante : elle a d’ailleurs pour ‘objet Iétude géne-
rale des cristaux, que ceux-ci soient naturels ou bien artificiels.

La cristallographie ainsi congue est une branche de la physico-
chimie mathématique. Elle se divise en deux grandes parties:
la cristallographie géométrique et la cristallographie physique.

Entre les propriétés physico-chimiques et la forme géomeé-
trique d’un cristal il existe une dépendance telle que, de la
forme seule, on peut déduire plusieurs propriétés. Réciproque-
ment, les propriétés optiques, électriques ou calorifiques per-
mettent de prévoir la forme.

La conclusion de la cristallographie est la nécessité de conce-
voir un cristal comme formé de certaines molécules ou de cer-
taines associations de molécules, rangées dans un certain ordre.

La forme géométrique ou la symétrie cristalline n’est que
expression symbolique de la symétrie intérieure que révelent
les propriétés physico-chimiques.

A la suite de plusieurs recherches de Gauss, on a fondé une
géométrie des surfaces.
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Sur une surface donnée, on considére des points et des lignes
remarquables. Citons les ombilics, les points paraboliques, les
points singuliers, les lignes de courbure, les lignes de courbure
totale constante, les géodésiques. Ces lignes et ces points ne sont
pas distribués d’une fagon quelconque.

Nous nous proposons d’appliquer la symétrie cristallogra-
phique & I’étude de certaines surfaces. Cette symétrie nous
donnera d’utiles renseignements sur la répartition des proprié-
tés géométriques.

Nous poursuivons un double but:

1o montrer les avantages qui peuvent résulter de cette méthode
pour la description d’une surface particuliére; :

20 faire voir que cette méthode pourrait servir de base & une
classification rationnelle des surfaces.

Nous nous adressons a la fois a des géométres et a des cristal-
lographes. Nous rappellerons le plus briévement possible les
définitions fondamentales de la géométrie et de la cristallographie.

Dans le premier chapitre nous ferons une étude détaillée d’une
surface du troisiéme ordre; dans le chapitre Il nous ferons une
étude succincte de deux surfaces du quatriéme ordre.

Dans ces deux premiers chapitres, nous aurons eu P’occasion
de rencontrer plusieurs principes généraux que nous résumerons
et que nous généraliserons dans le chapitre III. .

L’application de ces principes nous permettra d’aborder
quelques courbes et surfaces plus compliquées. Ce sera ’objet
du chapitre IV.

Enfin, dans un cinquiéme et dernier chapitre, nous esquisse-
rons une classification des surfaces au point de vue de la symétrie.

CHAPITRE PREMIER.

Etude détaillée d’'une surface tétraédrique.

§ 1. — Etude sommaire de quelques cubiques planes.

1. — Nous ferons précéder I’étude de chaque surface de celle
des principales courbes que ’on peut obtenir en la coupant par
des plans. "
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Dans la description des courbes algébriques planes du troi-
sibme ordre, nous adopterons la classification de ces courbes en
cinq grandes familles:

i
;;

non singuliéres ( bipartites . . . . . . . lo

(VI) % unipartites . . . . . . 20

Cubiques nodales { acnodales. . . . . 3°
unicursales. . (IV) crunodales ko

90

\ cuspidales (III)

Les cubiques non singuliéres sont de la VI® classe; les cubiques
nodales de la IVe: et les cubiques cuspidales de la ITI.

Les cubiques non singuliéres sont du premier genre, et les
cubiques unicursales du genre zéro.

Nous subdiviserons chaque famille en quatre groupes. Une
cubique peut rencontrer la droite de I'infini en:

a) trois points réels et distincts;

b) un point réel et deux points imaginaires;

“¢) un point simple et deux points coincidents;

d) trois points coincidents.

Les courbes algébriques planes du troisieme ordre se trouvent
ainsi distribuées en vingt grandes espéces. Par exemple, le folium
de Descartes [2* — 3azy + y* = 0] est une cubique [4°, 0] ; la
cissoide de Dioclés [z (2 + y*) = ay®], une cubique [5°, b] ; la
courbe zy(x + y) = &’ (x —y), une cubique [1°, a] ; enfin la
parabole semi-cubique (my® = 2 est une courbe [2°, d].

Chaque espéce se divise encore en plusieurs variétés ou sous-
variétés. Mais les vingt espéces nous suffiront pour ce qui vasuivre.

2. — Commencons par étudier le
lieu géométrique des points dont les <A
distances aux trois cotés d’un tri-
angle équilatéral ont un produit
constant.

Nous prendrons ce triangle comme
triangle fondamental, et nous em- &N
ploierons les coordonnées trilinéaires \
absolues. ﬂ/ c

L’équation du lieu pourra s’écrire: Fie. 1.

apy = m? .
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La courbe est une cubique ne rencontrant aucun coté du triangle
a distance finie.

Si la cubique passe par le point: «=ua, =0, y=c,
elle passe également par le point: o = b, 5 = ¢, y = a, et par le
point: « = ¢, f = q, 7 = 0. On ne doit pas perdre de vue que
’'on a:

o« + 8+ v = & = hauteur .

Si donc on fait tourner la cubique d’un angle de 1200 autour
d’une droite passant par le centre de gravité du triangle fonda-
mental, et perpendiculaire & son plan, la courbe viendra prendre
une position d’apparence identique & sa position premiére. Nous
dirons que la cubique posséde un axe ternaire normal & son plan.

En cristallographie, on appelle axe d’ordre n, et Pon repré-
sente par A” une droite qui jouit de la propriété suivante: quand
on fait tourner une certaine figure autour de cette droite, de la
n® partie d’un tour, elle vient occuper une position nouvelle,
complétement indiscernable de la position primitive. La figure
est alors dite restituée.

Les trois hauteurs du triangle de référence sont des A?, c’est-a-
dire des axes de symétrie ordinaire. Si la courbe passe par le
point (a, b, c), elle passe par le point (a, ¢, b). Une rotation de
180° autour d’une hauteur améne donc la restitution.

La courbe que nous étudions, admet alors quatre axes de
symétrie: A® 3A2

3. — Cette cubique ne peut avoir aucun point d’inflexion.

D’abord un pareil point ne peut se trouver en G.car ’axe ter-
naire exigerait la présence d’au moins trois tangentes inflexion-
nelles (trois ou bien un multiple de trois), ce qui ne peut pas étre.

La courbe ne peut pas avoir d’inflexion, en dehors du point G,
car les quatre axes entraineraient deux ou cinq autres inflexions,
suivant que la premiére appartiendrait ou non & l'une des hau-
teurs du triangle ABC. Toutes ces inflexions se trouveraient sur
une meme circonférence de centre G.

Mais une courbe algébrique plane du troisiéme ordre n’admet
jamais plus de trois inflexions réelles, et, quand elle en admet
trois, elles sont collinéaires. Or l’existence d’une droite d’in-
flexions n’est pas compatible avec la symétrie autour du A®
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4. — La courbe n’a certainement pas de centre, car le centre
d’une courbe d’ordre impair est toujours une inflexion.

Des raisonnements analogues prouvent que la cubique ne peut
avoir de noeud ni de rebroussement. On se rappellera qu’une
courbe non dégénérée du troisieme ordre ne peut avoir qu’un
seul point double. ,

5. — Des ‘deux numéros qui précédent, on peut conclure a la
proposition suivante:

TukorEME: Quand une courbe algébrique plane du trotsiéme
ordre, non dégénérée, posséde un axve de syméirie ternaire, normal
i son plan, elle n’admet nt inflexion, ni centre, ni neeud, nt rebrous-
sement. ’

6. — D’aprés ce que nous avons rappelé plus haut (1), toute
cubique rencontre la droite de l'infini en trois points dont, au
moing, un réel. Ce point réel, a U'infini, est le sommet d’un faisceau
de cordes paralléles, asymptotiques & la courbe. Il détermine
donc une direction asymptotique.

La symétrie ternaire associe, & cette direction, deux autres
directions asymptotiques. Toute cubique & A® appartient donc
au groupe a (1). |

La courbe ne rencontre aucune de ses trois asymptotes. Car,
si elle en rencontrait une, elle devrait les rencontrer toutes les
trois, en vertu de la symétrie ternaire. Mais on sait que les trois
intersections d’une cubique avec ses asymptotes, sont colli-
néaires. La droite, qu’elles déterminent, s’appelle la satellite de
la droite de I'infini. La symétrie exigerait que cette derniere eit
trois satellites, ce qui est absurde. Donec:

7. — TukoriME: Quand une courbe algébrique plane du irot-
siéme ordre, non dégénérée, posséde un axe de symélrie ternaire,
normal @ son plan, elle admet toujours trois asymptotes, et n’en
rencontre aucune.

8. — La cubique a3y = m®, que nous avons définie plus haut
(2), ne rencontre aucun c¢6té du triangle fondamental, & distance
finie. Par conséquent, elle les rencontre tous trois & distance
infinie. Elle admet donc ces trois cotés comme asymptotes.

9. — Le triangle fondamental ABC (2) partage le plan en sept
régions. L’une de ces régions est intérieure au triangle; trois autres

~sont adjacentes & des cOtés; et trois autres opposées a des angles.
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Sila constante m est négative, la courbe ne pénétre pas a 'inté-
rieur du triangle; elle se compose de trois branches, situées dans
les régions adjacentes aux cotés. Elle est done unipartite [29, a].

Si la constante m est positive, la courbe comprend toujours
trois branches, situées dans les régions opposées aux angles. Mais
il peut y avoir un ovale intérieur au triangle. Suivant les valeurs
positives de m, la courbe sera done unipartite ou bipartite.

Comme transition, nous aurons une courbe unicursale, néces-
sairement acnodale (4).

Nous nous proposons d’étudier séparément chacun de ces cas.

10. — Voyons d’abord comment la cubique rencontre les
médianes du triangle de référence. Entre les trois coordonnées
trilinéaires absolues d’un poins quelconque, on a la relation fon-

damentale. :
o+ [+ Yy=nh;

h désigne une hauteur-médiane (2).
Nous devons résoudre les trois équations suivantes, considé-
rées comme simultanées:

] N & (4 PRI, S
ally = m? o+ 3 +y="h, f=1v.

En vertu de la troisiéme, les deux autres peuvent s’écrire:

@2 J ¢ s
aB? = m? , o+ 28 = h .

L’avant-derniére montre que « et m ont toujours le méme signe.
Eliminons « ; il vient: )

m? = [2(h — 20) = h[? — 203 ;

si nous divisons par m® 8, nous obtiendrons:

1 h 1 2

=0 .

B omip T om
Le discriminant de cette équation cubique est:

1 1 3 1
= — e —— = (27 m3 — h3)
i mé 27 m? 277119( /m A )
Y
Il en résulte immédiatement le tableau suivant:
m < 0 cubique unipartite non singuliére [2°, a] ;
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m = 0 cubique dégénérée en trois droites ;
0<m<% cubique bipartite [1° a] ;
m = % cubique acnodale [3°, a] ;
m > %— cubique unipartite hon singuliere [20? al.
11. — Cubique acnodale. Le point double isolé ne peut étre

que G, en vertu de la symétrie. La courbe est unicursale. Nous
allons chercher son intersection mobile avec une droite variable
passant par G. Nous devons résoudre les équations:

h 3
lta+v(j—}—w\ifzg(u—}—v—}—w), o +L+yvy="1, aﬁyzj?ﬁ.

Nous avons proposé ce systéme, sous le n® 9214, dans le Jour-
nal de mathématiques élémentaires (Paris, Vuibert, 15 juillet 1920).
La nature géométrique du probléme suggére la solution: des
deux premiéres équations, on tire la valeur de (3 et de y en fonc-

tion de 2 ; on substitue dans la troisieme; on obtient une équa-

. . " h «
tion qui porr admettre la racine double: & = . On divise par:

(3o — h)? = 90 — 6o 4 R,

et 'on conserve une équation linéaire, de résolution facile. On

trouve ainsi:

. hiy — w)? ‘
= 3w — v)(u—w)’

73 et v s’obtiennent par permutation tournante.
12. — Cubique bipartite. 0 < m < % Plus haut (10). nous

avons cherché les points communs & la bissectrice 8 = y et a la
courbe. Nous avons obtenu I’équation:

2% — A2 4+ m®* =0 .

Puisque la cubique est bipartite, cette équation a ses trois
racines réelles. On applique le théoreme de Descartes, et 1’on
trouve une racine négative, et deux positives. La bissectrice
envisagée rencontre donc la courbe en trois points réels et dif-
férents, deux a 'intérieur du triangle, le troisiéme dans la ré-
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gion A (2). On a vu (10) que les trois valeurs de & ont le signe
de m. :

On fera le méme raisonnement pour les deux autres bissec-
trices. Ainsi la cubique posséde un ovale, intérieur au triangle
asymptotique (8). Cet ovale est ‘rés différent d’une ellipse: il
admet la symétrie du triangle équilatéral, A® 3A%

La cubique bipartite a neuf sommets. Nous appellerons som-
met tout point ou la courbe est rencontrée par Pun de ses axes
de symétrie.

13. — Nous proposons d’appeler tricentre le point ou le plan
d’une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane posséde un tricentre, elle est repré-
sentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On ‘doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que I'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu’en coor-
données cartésiennes. A propos de chaque probléme particulier,
la symétrie cristallographique d’une figure suggérera les coor-
données dont on doit se servir. ‘

y 2. — Symétrie du tétraédre régulier.

14. — Soit ABCD un tétraédre régulier. Ce polyédre n’admet
aucun centre. La perpendiculaire AH, abaissée d’un sommet sur
la face opposée, est un axe ternaire, car, si Pon fait tourner le
solide, autour de cette droite, d’un tiers de tour, il y a restitu-
tion (2). Par chaque sommet, passe un A*: il y a donc 4A°.
La droite MN, qui joint les milieux
9 de deux arétes opposées, est un axe de
0 symeétrie binaire. Donc 3AZ.
Les sept axes de symétrie se coupent
D B au centre de gravité du tétraddre.
Le plan ABM, qui contient une aréte
) et le milieu de ’aréte opposée, est un
Vs plan de symétrie. Chaque aréte déter-

Fig. 2. mine un pareil plan P. Donc 6 P.
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15. — On appelle symbole de syméirie d’un polyeédre, un
tableau comprenant I'indication de tous ses éléments de symétrie.
16. — Le symbole de symétrie du tétraedre régulier est donc:

A% . 3AZ. 6P .

§ 3. — Forme générale de la surface. — Ombilics.

17. — Nous allons étudier le lieu géométrique des points dont
les distances a trois plans fixes rectangulaires ont un produit
constant. C’est une surface ayant pour équation:

o — pf" .

Nous pouvons supposer p > 0, car, si p était < 0, on change-

‘rait le sens de 'un des axes.

Lla surface ne rencontre ni les axes

: : . Z
ni les plans coordonnés, a distance finie. Y
Elle ne péneétre dans aucun des triedres o
suivants: z'yz, xy'z, xyz', z'y'z, dans 7
chacun desquels le produit des coor- X__________ < X

données est négatif. :
On peut immédiatement trouver qua- ‘«
tre points de la surface: (+ p, + p, Yy E
+p)s (+p—p —p); (—p ‘
+ Py~ —8 —p | p). Ge Fig. 3.
sont les quatre points A, B, C, D, som-
mets d’un tétraédre régulier, dont le centre de gravité se trouve
a l'origine des coordonnées.
La surface x y z = p® se compose donc de quatre nappes indé-
finies, asymptotes aux plans coordonnés. ,
Son équation ne change pas quand on remplace z y z par y z z,
2Yx, XY, LY 3, TY Z, ete. La surface admet six plans de symé-
trie, qui sont les mémes que ceux du tétracdre ABCD.
On démontre, en cristallographie, que Pintersection de n plans
de symétrie est un A" Il en résulte que la surface, dont nous
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ous occupons, posséde exactement la méme symétrie cristallo-
graphique qu’un tétraédre régulier. Les axes ternaires ont pour
équations:

X =+ y=—+z;

les doubles signes sont in-
dépendants.

18. — Dans la suite, le

~ tétraédre ABCD va jouer

un réle important. On peut

aisément trouver les équa-

tions de ses quatre faces:

BCD : x+y+z=—p;
CDA:——x—]—J'—}-z:p;
DAB : r—y+s=p,
Fig. 4. ABC : X—4+y—z=p.

19. — Sur une surface, considérons un point ordinaire, ¢’est-a-
dire un point pour lequel le plan tangent est parfaitement
déterminé. La perpendiculaire menée au plan tangent, par le
point de contact, s’appelle normale.

Par cette normale faisons passer un plan quelconque ; il va
déterminer, dans la surface, une « section plane normale » laquelle
posseéde, au point considéré, une courbure bien déterminée. °

Faisons tourner le plan sécant: la courbure variera d’une
maniére continue. Euler a démontré que la courbure restait
comprise entre un maximum et un minimum, et que les sections
normales, correspondant au maximum et au minimum, étaient
perpendiculaires I'une sur 'autre. Ces deux sections sont dites
principales.

Depuis Monge, on appelle « ombilic » un point autour duquel
la courbure est la méme dans toutes les directions.

- Si, en un point d’une surface, le plan tangent n’est pas bien
déterminé, ce point est dit singulier. Le sommet d’un cone quel-
conque est toujours un point singulier. |

20. — Pour la surface que nous considérons, les points
A, B, C, D sont des ombilics. Il est facile de s’assurer que les
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plans tangents y ont pour équations respectives:

x+y+z2=3p;

t—7y—3z=3p ;

—x+y—z=3p ;

- —x—y+z=3p .

Ces quatre points ne sont donc pas singuliers.

D’autre part, la présence d’un A® est incompatible avec 1’exis-
tence de deux sections principales perpendiculaires entre elles.
Ces points sont donc des ombilies.

Au polyeédre ABCD, nous donnerons le nom de tetraedre
ombilical.

21. — D’une maniére plus générale, nous énoncerons la pro-
position suivante:

TutoreME: Quand une surface est rencontrée par un axe de
syméirie d’ordre supérieur & deux, chaque point d’intersection est
un point singulier, ou bien un ombilic.

22. — Nous pouvons, d’ailleurs, chercher les ombilics par
Panalyse. On démontre que les coordonnées d’un tel point véri-

fient les équations:
0%z B 0%z
da? _dxdy 0y2

o0z\2 0z dz dz\?2
|4 (22 2 (=
T <0x> ox 0y T (.03')

Dans le cas actuel, nous avons:

xyz = p*;
. _P 0P 0z __ P
T T ay o ey 0) xy?
0%z 2p3 o'z p? 0¥z _ 2pt
aat T ady T oxdy T ayrl T T oapd

2 1 2
y . (,1'.2)2 . 'g?
6 — 6 — 6
( P P 1 P
+ 3,4)2 a3y + 2%y
ou bien:
2xy xy 2y

e e S




16 M. WINANTS

On peut en déduire:

'1'4:}'2 — x2y4 — PG , (E)
puis:
xﬁyﬁ — pl2 ,
d’ou:
xy = & p*,
et, par conséquent:
s==%p.

De la premiére équation (E), on tire encore:

x* == y%, cest-d-dire: x =4y = *p., c.q. f. d.

23. — Pour mettre complétement en évidence la symétrie
tétraédrique de la surface, nous allons rapporter cette derniére
au tétraedre ombilical (20) comme tétraedre de référence.

D’un point quelconque de I’espace, nous abaisserons des per-
pendiculaires sur les quatre faces de ce tétraedre; nous repré-
senterons ces perpendiculaires par o, 3, y, 0; nous les prendrons
pour coordonnées tétraédriques du point ; nous choisirons les
signes de telle facon qu’un point, pris a I'intérieur du tétraédre,
ait ses quatre coordonnées positives. ‘

Les équations des quatre faces sont connues (18) ; les distances
d’un point quelconque de I’espace a ces faces, sont:

a=lety+stp: VE,

f=(—ax+r+z—p :(— V3),
vy=(x—y+z—0p) :(— V3),
b=(w+y—z—p) (= VE).

De ces quatre équations, 'on déduit:

x4+y4+s= aV3—p, )\
—ax4+y+z=—pV3+p, ")

ey =T

x—-}—‘)'—-z:—5v3——{—p.

De la somme des trois derniéres équations (F) retranchons la
premiere ; il vient:
(¢ +B+v+)V3 =1p, (G)
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ce qui prouve que les quatre coordonnées tétraédriques d’un

méme point ne sont pas indépendantes. Du reste, il est facile
de montrer, ¢ priori, que leur somme est égale & la hauteur du
tétraddre de référence. La hauteur de ce tétraédre est donc:

4 _
a+B+r1+3=5pV3 -

Si, de la premiére équation (F), on retranche, successivement,
chacune des trois autres, on obtient:

2 = (« 4 B) V3 — 2p ,
2y = (o + VT — 2
2z = (& + 3)\/3_—2[) X

Sil’on tient compte de ’équation (G), on trouve:

4x:(a—|—ﬁ——y——8‘)\/§,
by = (o — & 1 —D)VF | )
, 4z::(a—@-—y—|—8)\/~3“.

24. — Si le point (z, y, z) doit appartenir & la surface que
nous étudions, ses coordonnées doivent vérifier I'équation :

xyz = p°. En multipliant les équations (H) membre & membre,
on obtient:

64p3
TS B P bt B —or(a

— ad(a 4 3) — By(B 4 v) — LO(B + 9) — y3(y + )
+ 2(afy + af8 4+ ayd + By3) .

Mais, d’aprés 1'équation (G) du numéro précédent, on a:
4p
o 8 — = »
+ P+ e Q
L’équation de la surface peut donc s’écrire:
Yo + 3¥a?B 4 6Xafy = Yo — Xa?f 4+ 2Xafy .
On en conclut:
4(20&2{3 + Xafy) =0 .
¢’est-a-dire:
af (0 + B) + ay(o + v) + ad(e 4 8) + By(B 4 v) 4 BB + )
7 + Y8y + 8) 1+ afy + affd + ay® + Y3 = 0 .
g% L’Enseignement mathém., 22¢ année, 1921 et 1922. 2
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De cette derniére équation, il résulte:

1o que la surface admet la symétrie cristallographique du
tétraedre régulier;

20 qu’elle ne péneétre pas a lintérieur du tétraédre ombilical.

§ 4. — Sections planes.

25. — Tout plan, parallele & lun des plans coordonnés,
coupe la surface suivant une hyperbole équilatére. En effet, les
deux équations:

xyz = p*, 5= g,
entrainent:
3
o =P
[
26. — Tout plan passant par 'un des axes coordonnés, coupe
2 la surface suivant une cubique
) cuspidale (1). Carles deux équa-
tions:
xyz = p? , )y = tx
entrainent:
tx?z = p3 ,
ou
@iy = g® ,
0 X (est une cubique [5°, ¢] dont

le rebroussement se trouve a
I'infini. Cette cubique est for-
mée de deux branches, symétriques I'une de I’autre par rapport
a Paxe des z. La constante ¢® a le méme signe que ¢. La courbe
rencontre les bissectrices des angles que font les axes coordonnés,
aux points:

Fig. 5.

+rx—=z=a.

En ces points, les tangentes ont, pour coefficients angulaires :
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Cect démontre que les branches, prises séparément, ne sont
pas symétriques par rapport aux bissectrices.

27. — Pour étudier les sections faites par des plans perpen-
diculaires & un A%, nous allons, tout d’abord, établir des formules
de transformation des coordonnées, dont nous aurons souvent
a faire usage.

Tout plan perpendiculaire & la droite x = y = z, coupe le
, triedre coordonné trirectangle suivant un triangle équilatéral
ABCG, que nous prendrons comme triangle de référence.

Soient M un point quelconque du plan sécant ; x, y, z ses coor-
données rectilignes dans I'espace; «, 3,y ses coordonnées trili-
néaires absolues dans le plan sécant.
La figure montre qu’on a:

Z

s =y sinl ;

mais:

3cos?20) — 1 :

4

2
sin ) = =
3]

et, par conséquent:

-
«a BTy

D’autre part:

donc

SUNNY

Y
o

*+ Py =(r+1r+ :.)\/; — conslante

P

est équation du plan.

28. — Coupons donc la surface ryz = p* par le plan
£+ Y+ z2=1; en coordonnées trilinéaires absolues, la sec-
tion sera représentée par I’équation:

afy = (p\/;) = m? .

C’est donc la courbe que nous avons étudiée plus haut (2-12).
Le triangle fondamental a pour hauteur:

3
a+3+7:l\/§-
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En faisant varier [ de — o & + oo, on obtient toutes les
cubiques indiquées dans le tableau de la fin du n° 10.

29. — Toutes les sections planes ont des symétries parti-
culiéres, mais qui sont compatibles avec la symétrie tétra-
édrique de la surface. Il suffit qu’on tienne compte de la position
particuliere du plan sécant (25, 26, 28).

§ 5. — Propriétés du plan tangent.
30. — Nous allons établir quelques propriétés de la surface,
dont on ne verra pas immédiatement les relations avec la

symétrie.

Nous représenterons les coordonnées courantes d’'un point de
lespace par X, Y, Z, et celles du point de contact par =z, y, z.
L’équation du plan tangent est:

(X —ax)yz + (Y — )z + (Z — z)ay = 0,
ou
X Y  Z
= = e + = 3.

Done, les coordonnées a I’origine du plan tangent sont triples
des coordonnées du point de contact. Soit ABC le triangle sui-
vant lequel le plan tangent coupe le triedre coordonné. Le point
de contact est le centre de gravité du triangle ABC.

Tout plan tangent détermine, avec les plans coordonnés, un -
tétraedre de volume constant:

V= —2—}73 .

Tout ceci rappelle des propriétés de U'hyperbole algébrique
plane du second ordre.

31. — Calculons la distance d’un plan tangent & l’origine.
Cette distance est donnée par une formule bien connue de Géo-
métrie analytique. |
— 0 . 3xyz
1 Vy2zt 4 z2a? 4 a?y?

ou
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32. — Nous dllons chercher lintersection de la surface par

un plan tangent. Un pafeil plan coupe le triedre coordonné sui-
vant un triangle acutangle ABC, que nous prenons comme

triangle de référence

‘En représentant par 6’, 97, 9", les angles que font les plans
coordonnés avec le plan tangent, nous aurons:

Zo = v sin o
(Cf. n° 27). Mais, on a
1
cos §” — & : : : ;
+ \/x—,rz e + =
done:
11
+ 2 —+ 3,.2 . :\/xz 3 ).2
1 1 Vy2z? 4 2222 L a?y

Vs
On a (30): OA =3z ; OB—By,OC—?)z Appelons a, b, ¢
<, et

<

) cdz

sin 0" — —_= —,
sp*  9p?

d
(2)

les cotés du triangle ABC ; alors: V27 4 4

par conséquent:
cdzvy

b= ——L ,

=

Pour tout point de la section, nous aurons ainsi

729p*

La cubique, suivant laquelle le plan tangent coupe la surface
a donc pour équation
afr = abe . d® 3)

NN

27p
d

—

D’autre part, on a
1
—3—><lr1ang1eABC><d = —6—><OA><OB><OC
(!

ao + b+ cy =
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Cherchons les coordonnées triangulaires du point de contact;
dans la formule (2), supposons Z = z ; il en résulte:

9p?
| V= d
par analogie: (3)
3 3
o EB— H g = gp— .
ad bd
A titre d’abréviation, nous poserons:
Ip?
L 6
m k. (6)
les équations (3, 4, 5) deviennent alors:
q ? ?
cubique : g = T, (7)
que : affy = e 14
condition: aa 4 b 4 ¢y = 3m? ; (8)
) m? m? m?
point de contact : a=-—; f=—; 9=—
a b c 9
(9)
aoe = b =cy=m? .

Les dernieres équations prouvent que le point de contact est
le centre de gravité du triangle ABC (30).

33. — On sait que tout plan, tangent & une surface, coupe
cette surface suivant une courbe & point double. Dans le cas
actuel, nous obtiendrons une cubique acnodale [3°, «], qui géné-
ralisera celle du n® 11. En opérant comme pour cette derniére,
nous allons rechercher les coordonnées d’un point quelconque

2 2 2
de la courbe. Une droite, passant par le point (% ’l;)— %—), a

pour équation:

uo 4 v ++ wy = m2<;i+~;:— —|—%> . | (10)
En résolvant les équations (7, 8, 10), on trouve:

am?(cy — bw)?
g =

T be(ay — bu)(aw — cu)

puis 3,y par permutation tournante. Ces équations prouvent
que la courbe envisagée est unicursale.
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34. — Examinons enfin la section faite par un plan paralléle
au plan tangent, ¢’est-a-dire par un plan quelconque. Cherchons
si la cubique rencontre les médianes du triangle de référence.

Nous aurons les équations:

cubique : afy = £ ;|
médiane : b = cy ;

condition: aa 4+ bB 4+ cy = 3m? .
On cherche d’abord une équation en «, en éliminant 3 et y:
ao3 — 6am?a® 4~ Imia — &bck® =0 .

- D’aprés un théoréme de Descartes, cette équation n’admet
aucune racine négative, ou bien elle en admet une et une seule,
suivant que la constante & est positive ou négative.

On cherche ensuite une équation en 3, en éliminant « et y:

1 3hm? 1 252

(5_3_ack3'§ ack3:0'

On forme le discriminant de cette équation, et I’on arrive aux
conclusions suivantes:

E <0 cubique unipartite non singuliére [2°, a] ;
=20 cubique dégénérée en trois droites ;
6
0<k <L E";)—C cubique bipartite [19, a] ;
6
k= % cubique acnodale [3°, a] ;

k> —- cubique unipartite non singuliére [2°, a].

Cette discussion ressemble beaucoup & celle du no 10. Elle
reste la méme, que le triangle de référence soit acutangle ou
non (32).

De cette discussion, I'on peut déduire le théoréme suivant:

Si 'on demande le lieu géométrique des points dont les dis-
tances aux trois c6tés d’un triangle ont un produit constant, et
s1 Pon détermine cette constante de maniére que la cubique soit
unicursale, elle sera toujours acnodale, et le centre de gravité du
triangle sera le point double isolé.
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§ 6. — Sections sphériques.
35. — Nous allons étudier rapidement la courbe d’intersec-
tion de la surface:
xyz = p? (1
et de la spheére:
X2 4 g2 - 22 = 42 | (2)

En éliminant z entre (1)) et (2), on trouve:
(xz + yz - (12)1‘2)‘2 "l_ P6 — 0 . (3)

L’intersection compléte des surfaces (1) et (2) est une courbe
gauche algébrique du 6e ordre, composée de quatre parties,
dont chacune entoure la projection d’un ombilic sur la sphere.

Cette courbe gauche posséde encore la symétrie du tétraédre
régulier. |

Elle se projette sur le plan des Z, y suivant la sextique que
représente 'équation (3). On a nécessairement :

x2+3.2_a2<0'

Done, la sextique, qui se compose évidemment de quatre
ovales, est intérieure au cercle: z* Yy = a’.

La courbe ne rencontre pas les axes.

36. — En résolvant 1’équation (3), on obtient:

2xy? = x(a® — x%) £ YVat — 242x* + a*a? — 4p® .
Examinons le cas ot lon aurait: a — pV'3. La quantité
subradicale deviendrait alors:
(22 — p2)? (a2 — 4p?) .

Or (35) x est moindre que @ ; donc: 2 < 3p* La sextique
se réduit a quatre points isolés: ce sont les projections des ombi-
lics sur le plan des z, .

37. — L’équation polaire de la sextique est la suivante:
¢t sin®0 cos?(a? — p2) = Pt (4)
ou bien:
6
sin?26 — ip

p*(a? — p?)
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38. — Le maximum et le minimum de @ correspondent au
minimum de sin 20, don¢ au maximum de: :

pt(a® — ¢%) = (p°)7 XX (a® — %) .

Les rayons vecteurs correspondants sont donnés par I’équa-
tion:

F_a—g o
2 1 - 3’
done:
. 2
o= a 3 .
On trouve ensuite:
. 4p6 27p
sm226m—_—_ 7 I 5
§a4 > ~3—a2

d’otu:

511126 = = ap V3 +(P\/3)

Cette valeur est toujours acceptable quand la sphére coupe la
surface proposée, ¢’est-a-dire quand on a:

a=pVs .

Les valeurs de 6,, et les valeurs correspondantes de o pourront
eétre construites & I’aide de la régle et du compas. On voit aisé-
ment qu’on obtient ainsi huit points dé la sextique, et les tan-
gentes en ces points. De 1’origine, on peut donc mener huit tan-
gentes a la courbe. Ce sont, d’ailleurs, quatre bitangentes.

39. — Recherchons le maximum et le minimum de p. Soit
F(p, ) = 0 I’équation (4) du n° 37. On a:

Ok OF
b_o—d‘o -+ ﬁdﬂ s ) o

)

Mais dp = 0, donec L = 0, ¢’est-a-dire:

0
k

4

bz}

o, .
—6(sm26 cos?0) = 0 , d’ou 0 =

Comme la sextique ne rencontre pas les axes coordonnés (35),
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on ne peut donner & k£ que des valeurs impaires. Il suffit d’exa-

. T
miner: 0 = 7.

L’équation polaire de la sextique (37) donnera les valeurs
correspondantes de p:
phla® —g%) = 4p° ,
ou bien:
pf = a2p4-—|— 4p6 — 0 .

Cette équation, du troisiéme degré en p?, admet touj'ours une
racine négative, qui est & rejeter. Les deux autres sont positives
quand on a: ¢ = p\/3.

40. — La sextique admet 4. C; = 24 bitangentes.

De la discussion qui précede, ainsi d’ailleurs que de son équa-
tion cartésienne (35), il résulte qu’elle admet la symétrie du
carré. Dans son plan, elle possede quatre axes de symétrie A*® ;
perpendiculairement a son plan, un A*.

41. — On arriverait a la méme sextique en étudiant la sur-
face:

xyz = — p* .

Ce fait s’explique, de soi-méme, si1’on se rappelle que la symé-
trie tétraédrique est une hémiédrie de la symétrie cubique.

42. — Nous allons chercher ’équation de la sextique gauche
(35) en coordonnées sphériques trilinéaires absolues. Nous

emploierons un systeme que

Z nous a suggéré M. Louis

FouaRrGe, chargé de cours a
I’Université de Liége.

Une sphére, ayant son
centre a l'origine, coupe le
triedre coordonné suivant
un triangle trirectangle ABC,

~-X que nous prendrons comme
figure de référence. D’un
point quelconque M, nous
| abaisserons, sur les cotés du
Y triangle fondamental, les
= perpendiculaires o, 3, y. Soit

Fig. 7.
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OA
OM

I

OB = OC = m le rayon de la sphére. On a encore
m. Les formules de transformation sont:

I

X —=msina ; y:msin@; - z=—msiny .
De I'équation de la sphére: 2* + y* 4 2> = m’, on déduit:
sin?a 4 sin?f + sin?y =1, (1)

Un systéme de coordonnées sphériques n’est entiérement
déterminé que si I'on connait ’équation d’un grand cercle.

Dans le n® 1 de la 14¢ année (novembre 1911) du Bulletin
scientifigue de I'Association des Eléves des Ecoles Spéciales,
(A.E.E.S., Université de Liége), MM. V. LEJEUNE et A. SCHLAG
ont donné I’équation d’un grand cercle, en employant les coor-

données:
0o = BM ; o = angle ABM .

Cette équation peut s’écrire (loc. cit., page 17):

= : 2
~ Vecosw + Wsinw

o

tg

De la considération des triangles sphériques rectangles MRB,
MPB, on tire:

siny = sinp sinw , sina = sinp cos w ;

Iéquation (2) peut s’écrire:

sin p

8 = Voino + Wsing '

ou:
Vsina 4+ Wsiny = cosp :
mais on a:

’équation d’un grand cercle peut donc s’écrire:
asina + bsinf 4 csiny = 0 . - (3)

On en conclurait aisément I’équation du grand cercle passant
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par deux points donnés de la spheére, puis celle du grand cercle
tangent a une courbe donnée en un point donns.

Si le point M doit appartenir a la surface tétraédrique que nous
etudions, il faudra qu’on ait:

3
sin o . sin § . sin g :—P—§ . (4)
: m

En discutant les signes, on verra que Péquation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la cour-
bure totale, en un point ordinaire d’une surface, est 'inverse
du produit des rayons de courbure principaux (19). Elle est sus-
ceptible de I’expression suivante:

%z o2z 02z \?
_ ot T \oxoy
- 0z \? 0z\2 )? °
1 had s
() )

44. — Appliquons cette formule & la surface:

xyz =— p3 .

Les dérivées partielles ont été données plus haut (22). On a,

~apres un calcul facile:

P 3pSatytst _ 3 "
12 ) 2.2 9.9 2.9 (27 1 1 1 )2
p {34 + z%x +x3} p63;_2+_‘y_2+?$
3,8
= P (2)

b‘zzz + 2%x? x?y? }2 '

Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points ellip-
tiques. |

45. — De la formule (1), on déduit que ¢’est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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la surface a la méme courbure totale. D’apres la formule (1), on
doit avoir:

Cette équation représente des surfaces algébriques du sixiéme
ordre, & huit nappes, admettant les plans

wre—= = g ? y==c¢; z=-+c;

comme plans asymptotes. L’origine est un point quadruple
isolé. Toute section faite dans I'une de ces surfaces par un plan
paralleéle & un plan coordonné, est une krenzcurve.

On obtient un résultat d’apparence plus simple en considé-
rant ’équation (2). Une ligne de courbure totale constante est
représentée par les équations:

1222 4 22?4 afy? = a* , xrz = p? .

On pourrait faire ici la méme remarque qu’au n° 41.

47. — Au n° 31, nous avons trouvé la longueur de la perpen-
diculaire abaissée de l'origine sur le plan, tangent a la surface,
au point (z, y, 2):

d = 5P
- »\/3,2:2 + zzxz + 1'2]”2
Il en résulte:
d4 _ 81p12

59”252 + =2 4 x%y? §2 -

En comparant cette formule & la formule (2) du n® 44, on

trouve:
d4
h—=— .
27p"

TutoriME: Si, en chaque point d’une ligne de courbure
totale constante, on mene le plan tangent & la surface, tous ces
plans enveloppent une sphére, dont le centre se trouve & 1’ori-
gine.

Cette propriété est encore compatible avec la symétrie de la
surface (41).

(A suivre).
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