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APPLICATIONS GÉOMÉTRIQUES

DE LA

CRISTALLOGRAPHIE

PAR

Marcel Winants (Liège).

Introduction.

On sait que la cristallographie fut créée, il y a plus d'un siècle,

par Haüy. Tout d'abord, on ne la considéra que comme un

chapitre préliminaire de la minéralogie. Mais son importance ne

cessa de grandir; on peut aujourd'hui l'envisager comme une

science indépendante: elle a d'ailleurs pour objet l'étude générale

des cristaux, que ceux-ci soient naturels ou bien artificiels.

La cristallographie ainsi conçue est une branche de la physicochimie

mathématique. Elle se divise en deux grandes parties:

la cristallographie géométrique et la cristallographie physique.

Entre les propriétés physico-chimiques et la forme géométrique

d'un cristal il existe une dépendance telle que, de la

forme seule, on peut déduire plusieurs propriétés. Réciproquement,

les propriétés optiques, électriques ou calorifiques
permettent de prévoir la forme.

La conclusion de la cristallographie est la nécessité de concevoir

un cristal comme formé de certaines molécules ou de

certaines associations de molécules, rangées dans un certain ordre.

La forme géométrique ou la symétrie cristalline n'est que

l'expression symbolique de la symétrie intérieure que révèlent

les propriétés physico-chimiques.
A la suite de plusieurs recherches de Gauss, on a fondé une

géométrie des surfaces.
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Sur une surface donnée, on considère des points et des lignes
remarquables. Citons les ombilics, les points paraboliques, les
points singuliers, les lignes de courbure, les lignes de courbure
totale constante, les géodésiques. Ces lignes et ces points ne sont
pas distribués d'une façon quelconque.

Nous nous proposons d'appliquer la symétrie cristallogra-
phique à l'étude de certaines surfaces. Cette symétrie nous
donnera d'utiles renseignements sur la répartition des propriétés

géométriques.
Nous poursuivons un double but:
1° montrer les avantages qui peuvent résulter de cette méthode

pour la description d'une surface particulière;
2° faire voir que cette méthode pourrait servir de base à une

classification rationnelle des surfaces.
Nous nous adressons à la fois à des géomètres et à des cristal-

lographes. Nous rappellerons le plus brièvement possible les
définitions fondamentales de la géométrie et de la cristallographie.

Dans le premier chapitre nous ferons une étude détaillée d'une
surface du troisième ordre; dans le chapitre II nous ferons une
étude succincte de deux surfaces du quatrième ordre.

Dans ces deux premiers chapitres, nous aurons eu l'occasion
de rencontrer plusieurs principes généraux que nous résumerons
et que nous généraliserons dans le chapitre III.

L'application de ces principes nous permettra d'aborder
quelques courbes et surfaces plus compliquées. Ce sera l'objet
du chapitre IV.

Enfin, dans un cinquième et dernier chapitre, nous esquisserons

une classification des surfaces au point de vue de la symétrie.

Chapitre premier.

Etude détaillée d'une surface tétraédrique.

§ L — Etude sommaire de quelques cubiques planes.

1. — Nous ferons précéder l'étude de chaque surface de celle
des principales courbes que l'on peut obtenir en la coupant par
des plans.
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Dans la description des courbes algébriques planes du

troisième ordre, nous adopterons la classification de ces courbes en

cinq grandes familles :

Cubiques

non singulières
(VI)

unicursales

bipartites
' unipartites

nodales i acnodales.

(IY) crunodales

cuspidales (III) •

1"

2«

3o

40

5°

Les cubiques non singulières sont de la VIe classe; les cubiques

nodales de la IVe; et les cubiques cuspidales de la IIIe.
Les cubiques non singulières sont du premier genre, et les

cubiques unicursales du genre zéro.

Nous subdiviserons chaque famille en quatre groupes. Une

cubique peut rencontrer la droite de l'infini en:

a) trois points réels et distincts;
b) un point réel et deux points imaginaires;
c) un point simple et deux points coïncidents;

d) trois points coïncidents.
Les courbes algébriques planes du troisième ordre se trouvent

ainsi distribuées en vingt grandes espèces. Par exemple, le folium
de Descartes [V — 3axy + y* 0] est une cubique [4°, b] ; la

cissoïde de Dioclès [x (x2 + y2) ay\ une cubique [5°, b] ; la

courbe xy(x -j- y) a? (x *— ?/), une cubique [1°, a] ; enfin la

parabole semi-cubique (my2 x3) est une courbe [5°, d].

Chaque espèce se divise encore en plusieurs variétés ou sous-

variétés. Mais les vingt espèces nous suffiront pour ce qui va suivre.
2. — Commençons par étudier le

lieu géométrique des points dont les

distances aux trois côtés d'un
triangle équilatéral ont un produit
constant.

Nous prendrons ce triangle comme

triangle fondamental, et nous
emploierons les coordonnées trilinéaires
absolues.

L'équation du lieu pourra s'écrire:
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La courbe est une cubique ne rencontrant aucun côté du triangle
à distance finie.

Si la cubique passe par le point: fi b.
elle passe également par le point: « c, et par le
point. ac, fi a, yb.Onne doit pas perdre de vue quel'on a:

a T- ß + y — h hauteur

^

Si donc on fait tourner la cubique d'un angle de 120° autour
d une droite passant par le centre de gravité du triangle
fondamental, et perpendiculaire à son plan, la courbe viendra prendre
une position d apparence identique à sa position première. Nous
dirons que la cubique possède un axe ternaire normal à son plan.

En cristallographie, on appelle axe d'ordre n, et l'on représente

par A." une droite qui jouit de la propriété suivante: quand
on fait tourner une certaine figure autour de cette droite, de la
ne partie d'un tour, elle vient occuper une position nouvelle,
complètement indiscernable de la position primitive. La figure
est alors dite restituée.

Les trois hauteurs du triangle de référence sont des A"2, c'est-à-
dire des axes de symétrie ordinaire. Si la courbe passe par le
point (a, è, c), elle passe par le point (a, c, b). Une rotation de
180 autour d'une hauteur amène donc la restitution.

La courbe que nous étudions, admet alors quatre axes de
symétrie: A3, 3A"2.

3- Cette cubique ne peut avoir aucun point d'inflexion.
D'abord un pareil point ne peut se trouver en G,car l'axe

ternaire exigerait la présence d'au moins trois tangentes inflexion-
nelles (trois ou bien un multiple de trois), ce qui ne peut pas être.

La courbe ne peut pas avoir d'inflexion, en dehors du point G,
car les quatre axes entraîneraient deux ou cinq autres inflexions,
suivant que la première appartiendrait ou non à l'une des
hauteurs du triangle ABC. Toutes ces inflexions se trouveraient sur
une même circonférence de centre G.

Mais une courbe algébrique plane du troisième ordre n'admet
jamais plus de trois inflexions réelles, et, quand elle en admet
trois, elles sont collinéaires. Or l'existence d'une droite d'in-

| flexions n'est pas compatible avec la symétrie autour du A3.
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4. — La courbe n'a certainement pas de centre, car le centre

d'une courbe d'ordre impair est toujours une inflexion.

Des raisonnements analogues prouvent que la cubique ne peut

avoir de nœud ni de rebroussement. On se rappellera qu'une

courbe non dégénérée du troisième ordre ne peut avoir qu un

seul point double.
5. — Des deux numéros qui précèdent, on peut conclure à la

proposition suivante:
Théorème: Quand une courbe algébrique plane du troisième

ordre, non dégénérée, possède un axe de symétrie ternaire, no? mal

à son plan, elle n'admet ni inflexion, ni centre, ni nœud, ni rebroussement.

6. — D'après ce que nous avons rappelé plus haut (1), toute

cubique rencontre la droite de l'infini en trois points dont, au

moins, un réel. Ce point réel, à l'infini, est le sommet d'un faisceau

de cordes parallèles, asymptotiques à la courbe. Il détermine

donc une direction asymptotique.
La symétrie ternaire associe, à cette direction, deux autres

directions asymptotiques. Toute cubique à A3 appartient donc

au groupe a (1).
La courbe ne rencontre aucune de ses trois asymptotes. Car,

si elle en rencontrait une, elle devrait les rencontrer toutes les

trois, en vertu de la symétrie ternaire. Mais on sait que les trois
intersections d'une cubique avec ses asymptotes, sont colli-

néaires. La droite, qu'elles déterminent, s'appelle la satellite de

la droite de l'infini. La symétrie exigerait que cette dernière eût

trois satellites, ce qui est absurde. Donc:
7. — Théorème: Quand une courbe algébrique plane du

troisième ordre, non dégénérée, possède un axe de symétrie ternaire,
normal à son plan, elle admet toujours trois asymptotes, et n'en

rencontre aucune.
8. — La cubique aßy rrc\ que nous avons définie plus haut

(2), ne rencontre aucun côté du triangle fondamental, à distance
finie. Par conséquent, elle les rencontre tous trois à distance
infinie. Elle admet donc ces trois côtés comme asymptotes.

9. — Le triangle fondamental ABC (2) partage le plan en sept
régions. L'une de ces régions est intérieure au triangle ; trois autres
sont adjacentes à des côtés; et trois autres opposées à des angles.
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Si la constante m est négative, la courbe ne pénètre pas à l'intérieur

du triangle; elle se compose de trois branches, situées dans
les régions adjacentes aux côtés. Elle est donc unipartite [2°,

Si la constante m est positive, la courbe comprend toujours
trois branches, situées dans les régions opposées aux angles. Mais
il peut y avoir un ovale intérieur au triangle. Suivant les valeurs
positives de m,la courbe sera donc unipartite ou bipartite.

Comme transition, nous aurons une courbe unicursale,
nécessairement acnodale (4).

Nous nous proposons d'étudier séparément chacun de ces cas.
10. Voyons d'abord comment la cubique rencontre les

médianes du triangle de référence. Entre les trois coordonnées
trilinéaires absolues d'un point quelconque, on a la relation
fondamentale. :

a "f ß + Y h ;

h désigne une hauteur-médiane (2).

^

Nous devons résoudre les trois équations suivantes, considérées

comme simultanées:

aßy — m3
-, a + ß -|- y h ß y

En vertu de la troisième, les deux autres peuvent s'écrire:

aß2 — m3 a -f- 2 ß — h

L'avant-dernière montre que «et ont toujours le même signe.
Eliminons « ; il vient:

m3 ß2(/z — 2 ß) — h ß2 — 2 ß3 ;

si nous divisons par m'ßJ,nous obtiendrons :

1_ h 12

_(i3 m3[im3
^

Le discriminant de cette équation cubique est:

» _
1 1 l'3l— m6 27 m9 27m9

"l<i
'

\
Il en résulte immédiatement le tableau suivant :

m<0 cubique unipartite non singulière [2°, a ;
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m — 0 cubique dégénérée en trois droites ;

0 < m < j cubique bipartite [1°, a] ;

h
m -77 cubique acnodale [3°, a] ;

m > (7 cubique unipartite non singulière [2°, a].

11. — Cubique acnodale. Le point double isolé ne peut être

que G, en vertu de la symétrie. La courbe est unicursale. Nous

allons chercher son intersection mobile avec une droite variable

passant par G. Nous devons résoudre les équations:

h h?'

u a + i' ß + u'y =ï| \u 4" 4" <p)
> a 4- ß + y /i aßy —

Nous avons proposé ce système, sous le n° 9214, dans le Journal

de mathématiques élémentaires (Paris, Vuibert, 15 juillet 1920).

La nature géométrique du problème suggère la solution: des

deux premières équations, on tire la valeur de ß et de y en fonction

de a ; on substitue dans la troisième; on obtient une équation

qui doit admettre la racine double: On divise par:

(3 a — h)2 9 a2 — 6 h ai -f- h2

et l'on conserve une équation linéaire, de résolution facile. On

trouve ainsi:
h (i-' — «')2

3 Iu — v) [u — »<-)

ß et y s'obtiennent par permutation tournante.

12. — Cubique bipartite. 0 < m < Plus haut (10); nous

avons cherché les points communs à la bissectrice ß y et-à la
courbe. Nous avons obtenu l'équation:

2 ß-3 _ h ß2 m3 _ 0
_

Puisque la cubique est bipartite, cette équation a ses trois
racines réelles. On applique le théorème de Descartes, et l'on
trouve une racine négative, et deux positives. La bissectrice

envisagée rencontre donc la courbe en trois points réels et
différents, deux à l'intérieur du triangle, le troisième dans la ré-
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gion A (2). On a vu (10) que les trois valeurs de a ont le signe
de m.

On fera le même raisonnement pour les deux autres bissectrices.

Ainsi la cubique possède un ovale, intérieur au triangle
asymptotique (8). Cet ovale est très différent d'une ellipse: il
admet la symétrie du triangle équilatéral, A3, 3A"2.

La cubique bipartite a neuf sommets. Nous appellerons sommet

tout point où la courbe est rencontrée par l'un de ses axes
de symétrie.

13. Nous proposons d'appeler tricentre le point où le plan
d une courbe est rencontré par un axe de symétrie ternaire.

Quand une courbe plane possède un tricentre, elle est
représentable, en coordonnées trilinéaires absolues, par une équation
symétrique. On doit prendre, comme figure de référence, un
triangle équilatéral dont les médianes concourent au tricentre.

Nous croyons pouvoir affirmer que l'étude de la courbe sera
beaucoup plus simple en coordonnées trilinéaires qu'en
coordonnées cartésiennes. A propos de chaque problème particulier,
la symétrie cristallographique d'une figure suggérera les
coordonnées dont on doit se servir.

Symétrie du tétraèdre régulier.

Soit ABCD un tétraèdre régulier. Ce polyèdre n'admet
aucun centre. La perpendiculaire AH, abaissée d'un sommet sur
la face opposée, est un axe ternaire, car, si l'on fait tourner le
solide, autour de cette droite, d'un tiers de tour, il y a restitution

(2). Par chaque sommet, passe un A3; il y a donc 4A3.
La droite MN, qui joint les milieux

de deux arêtes opposées, est un axe de
symétrie binaire. Donc 3A2.

Les sept axes de symétrie se coupent
au centre de gravité du tétraèdre.

Le plan ABM, qui contient une arête
et le milieu de l'arête opposée, est un
plan de symétrie. Chaque arête détermine

un pareil plan P. Donc 6 P.
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15. — On appelle symbole de symétrie d'un polyèdre, un
tableau comprenant l'indication de tous ses éléments de symétrie.

16. — Le symbole de symétrie du tétraèdre régulier est donc:

4A3 3A2 6P

S 3. Forme générale de la surface. — Ombilics.

17. — Nous allons étudier le lieu géométrique des points dont
les distances à trois plans fixes rectangulaires ont un produit
constant. C'est une surface ayant pour équation:

xyz — p"

z
/y'

//

X

//
;

Nous pouvons supposer p > 0, car, si p était < 0, on changerait

le sens de l'un des axes.
La surface ne rencontre ni les axes

ni les plans coordonnés, à distance finie.
Elle ne pénètre dans aucun des trièdres
suivants: x'yz, xy'z, xyz', x'y'z, dans
chacun desquels le produit des
coordonnées est négatif.

On peut immédiatement trouver quatre

points de la surface: (+ p, + p,
+ P) ; (+ p, — p, — p) ; (— p,
+ P, — P) ; (—-P, — p, + P)- Ce

sont les quatre points A, B, C, D,
sommets d'un tétraèdre régulier, dont le centre de gravité se trouve
à l'origine des coordonnées.

La surface xy z p3 se compose donc de quatre nappes
indéfinies, asymptotes aux plans coordonnés.

Son équation ne change pas quand on remplace xyz par y x z,
z y x, x z y, xyz, xyz, etc. La surface admet six plans de symétrie,

qui sont les mêmes que ceux du tétraèdre ABCD.
On démontre, en cristallographie, que l'intersection de n plans

de symétrie est un A". Il en résulte que la surface, dont nous

Fis
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nous occupons, possède exactement la même symétrie cristallo-
graphique qu'un tétraèdre régulier. Les axes ternaires ont pour

n r. équations:
z

les doubles signes sont
indépendants.

18. — Dans la suite, le
tétraèdre ABCD va jouer
un rôle important. On peut
aisément trouver les équations

de ses quatre faces:

Fig. 4.

BCD

CDA

DAB

ABC :

x -f- r s — — p
x + J + ~ p ;

« — y + - — p
x + y — z p

Sur une surface, considérons un point ordinaire, c'est-à-
dire un point pour lequel le plan tangent est parfaitement
déterminé. La perpendiculaire menée au plan tangent, par le
point de contact, s'appelle normale.

Par cette normale faisons passer un plan quelconque ; il va
déterminer, dans la surface, une « section plane normale » laquelle
possède, au point considéré, une courbure bien déterminée. *

Faisons tourner le plan sécant: la courbure variera d'une
manière continue. Euler a démontré que la courbure restait
comprise entre un maximum et un minimum, et que les sections
normales, correspondant au maximum et au minimum, étaient
perpendiculaires l'une sur l'autre. Ces deux sections sont dites
principales.

Depuis Monge, on appelle « ombilic » un point autour duquel
la courbure est la même dans toutes les directions.

Si, on un point d'une surface, le plan tangent n'est pas bien
déterminé, ce point est dit singulier. Le sommet d'un cône
quelconque est toujours un point singulier.

20. — Pour la surface que nous considérons, les points
A, B, C, D sont des ombilics. Il est facile de s'assurer que les



GÉOMÉTRIE 15

plans tangents y ont pour équations respectives:

x + y + z — sp ;

— X + y — s 3p ;

— x — y + s 3p

Ces quatre points ne sont clone pas singuliers.
D'autre part, la présence d'un A3 est incompatible avec l'existence

de deux sections principales perpendiculaires entre elles.

Ces points sont donc des ombilics.
Au polyèdre ABCD, nous donnerons le nom de tétraèdre

ombilical.
21. — D'une manière plus générale, nous énoncerons la

proposition suivante:
Théorème: Quand une surface est rencontrée par un axe de

symétrie d'ordre supérieur à deux, chaque point dintersection est

un point singulier, ou bien un ombilic.
22. — Nous pouvons, d'ailleurs, chercher les ombilics par

l'analyse. On démontre que les coordonnées d'un tel point vérifient

les équations:
ö2s Ö2 s b2Z

öx2 öx by by

1 + -XL — l + (—
\bx J öx by \ ÖJ

Dans le cas actuel, nous avons :

tyz —

_ p3 ÖS p3 ÖS p3

xy
' bx x2y '

by xy2

ö2s 2p3 ö2s p3 ö2s 2p3
bx2 xsy

' bx by x2)'2 '
öy2 xy3

Les équations aux coordonnées des ombilics deviennent alors:

ou bien:

2 i

ïv
4- _z!_

' 4 2x y " rj4
2x;y xy

•D.r2 +
2xy

**)* + f
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On peut en déduire:
x*y2 — x2yA — p6

puis:
x°y» pXi12

d'où:
xy — -i- p2

et, par conséquent:

De la première équation (E), on lire encore:

x2 ~~ y2 c'est-à-dire : x z=z -h y — H- p c. q. f. d

23. — Pour mettre complètement en évidence la symétrie
tétraédrique de la surface, nous allons rapporter cette dernière
au tétraèdre ombilical (20) comme tétraèdre de référence.

D'un point quelconque de l'espace, nous abaisserons des

perpendiculaires sur les quatre faces de ce tétraèdre; nous
représenterons ces perpendiculaires par a, /3, y, d; nous les prendrons
pour coordonnées tétraédriques du point ; nous choisirons les

signes de telle façon qu'un point, pris à l'intérieur du tétraèdre,
ait ses quatre coordonnées positives.

Les équations des quatre faces sont connues (18) ; les distances
d'un point quelconque de l'espace à ces faces, sont:

De la somme des trois dernières équations (F) retranchons la
première ; il vient:

a — (x -f- y + c- -j- p) : y3

ß (— x + y + s — p) l (— V3

y — (x — y + 3 — p) : (— V3 j

8 — (x + y — z — p) : (— V3 }

De ces quatre équations, l'on déduit:

x r -4- s a V3 — v \

(a + ß + y + 8) V3 kp
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ce qui prouve que les quatre coordonnées tétraédriques d'un

même point ne sont pas indépendantes. Du reste, il est facile

de montrer, a priori, que leur somme est égale à la hauteur du

tétraèdre de référence. La hauteur de ce tétraèdre est donc :

a + ß + Y + ^ V3 •

Si, de la première équation (F), on retranche, successivement,

chacune des trois autres, on obtient:

Tx zr: (a -f- ß) S — 2p

2y zz: (a + y) V.3 — 2/>

:2z z= (a + §) 2P

Si l'on tient compte de l'équation (G), on trouve:

kx zz (a -f- ß — Y — 8) V3 1

4y zz (a — ß Y — 8) V3 | (d|
4jz ,j(a — ß — Y "F V3 •

24. — Si le point (#, y, 2) doit appartenir à la surface que
nous étudions, ses coordonnées doivent vérifier l'équation :

xyz p\ En multipliant les équations (H) membre à membre,
on obtient:

—= a3 -f- ß3 + y3 + S3 — aß (a + ß) — a y (a -j- y)
V27

- a8(a +8) — ßT(ß + ï) - ßS(ß + 5) - TS(T + 8)

-f- 2(aßY + aßo -}- aY§ -f- ßy•
Mais, d'après l'équation (G) du numéro précédent, on a:

„ + P + I + ä i.
L'équation de la surface peut donc s'écrire:

Ha3 -f- 3Xa2ß -j- 6SaßY — Sa3 — Sa2ß-j- 2SaßY

On en conclut:
4 (S a2 ß + S a ß T) 0

c'est-à-dire:

aß (<x + ß) + ay (a -f- y) + ad (a -f- 8) -j- ßY (ß + Y) ~F ß^(ß "F 8)

"F yMï "F 8) -f aßY + aß8 -j- ay§ -|- ßY^ — 0

L'Enseignement mathém., 22e année, 1921 et 1922. 2



18 M. WINANTS
De cette dernière équation, il résulte:
1° que la surface admet la symétrie cristallographique du

tétraèdre régulier;
2° qu'elle ne pénètre pas à l'intérieur du tétraèdre ombilical.

§ 4. — Sections planes.

25. — Tout plan, parallèle à l'un des plans coordonnés,
coupe la surface suivant une hyperbole équilatère. En effet, les
deux équations:

xyz — p3 z zzz c

entraînent :

26. — Tout plan passant par l'un des axes coordonnés, coupe
la surface suivant une cubique
cuspidale(l). Caries deux
équations:

xyz =z p3 y — tx

entraînent :

tx2 Z — p3

OU

x2z — a3

ß C'est une cubique [5°, c] dont

Fio. 5
le rebroussement se trouve à

l'infini. Cette cubique est
formée de deux branches, symétriques l'une de l'autre par rapport
à l'axe des 2. La constante a6 a le même signe que t. La courbe
rencontre les bissectrices des angles que font les axes coordonnés,
aux points:

-j~ x z a

En ces points, les tangentes ont, pour coefficients angulaires:
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Ceci démontre que les branches, prises séparément, ne sont
pas symétriques par rapport aux bissectrices.

27. — Pour étudier les sections faites par des plans
perpendiculaires à un A3, nous allons, tout d'abord, établir des formules
de transformation des coordonnées, dont nous aurons souvent
à faire usage.

Tout plan perpendiculaire à la droite x y 2, coupe le
trièdre coordonné trirectangle suivant un triangle équilatéral
ABC, que nous prendrons comme triangle de référence.

Soient M un point quelconque du plan sécant \x, y,z ses
coordonnées rectilignes dans l'espace; a, /3, y ses coordonnées trill-
néaires absolues dans le plan sécant.
La figure montre qu'on a:

z — y sin 0 ;

mais :

3 cos2 0 1;
donc

sin 0 1 /— :V 3

et, par conséquent:

- — L — £ — ß
a _ ß _ y - V 3

•

D'autre part:

a + ß + Y (-*' + ,r + y/y constante

est l'équation du plan.
28. — Coupons donc la surface xyz p! par le plan

x + V + 2 l ; en coordonnées trilinéaires absolues, la
section sera représentée par l'équation:

«Py (/\/t)'"3 •

C'est donc la courbe que nous avons étudiée plus haut (2-12).
Le triangle fondamental a pour hauteur:

> + <> + •=,\J\
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En faisant varier l de — oo à + oo, on obtient toutes les

cubiques indiquées dans le tableau de la fin du n° 10.

29. — Toutes les sections planes ont des symétries
particulières, mais qui sont compatibles avec la symétrie tétra-
édrique de la surface. Il suffit qu'on tienne compte de la position
particulière du plan sécant (25, 26, 28).

§ 5. — Propriétés du plan tangent.

30. — Nous allons établir quelques propriétés de la surface,
dont on ne verra pas immédiatement les relations avec la

symétrie.
Nous représenterons les coordonnées courantes d'un point de

l'espace par X, Y, Z, et celles du point de contact par x, y, 2.

L'équation du plan tangent est:

(X — x^jyz —j— —t)zx —|— (Z — z}xy — 0

OU

î + - + | 3
x y z

Donc, les coordonnées à l'origine du plan tangent sont triples
des coordonnées du point de contact. Soit ABC le triangle
suivant lequel le plan tangent coupe le trièdre coordonné. Le point
de contact est le centre de gravité du triangle ABC.

Tout plan tangent détermine, avec les plans coordonnés, un
tétraèdre de volume constant:

9
v ^».

Tout ceci rappelle des propriétés de l'hyperbole algébrique
plane du second ordre.

31. — Calculons la distance d'un plan tangent à l'origine.
Cette distance est donnée par une formule bien connue de

Géométrie analytique.
— 3 3xyzd —

\/i 11 ]/y*z* + s2*2

j2 z2

OU
:'ip3
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32. -— Nous allons chercher l'intersection de la surface par
un plan tangent. Un pareil plan coupe le trièdre coordonné
suivant un triangle acutangle ABC, que nous prenons comme
triangle de référence.

En représentant par 0f> 9", 9"', les angles que font les plans
coordonnés avec le plan tangent, nous aurons:

Z ~ 7 sin 6"

(Cf. n° 27). Mais, on a:
1

cos r
donc:

sin 0W —

,1 1 1

+ \/ TV + TV + TV7

v/i + v _ =v

+ \/i 11 Vj2-2 + £2^2 -f- 2

TV ~i~ TV

On a (30) : OA 3 x ; OB 3 y ; OC — 3 z. Appelons a, ô, c

les côtés du triangle ABC ; alors: 1/ + et^ o

c

par conséquent:

A/// 5L CC^Z

3p3 9p3
d

__ cdzy
9p3

Pour tout point de la section, nous aurons ainsi:

„3 _ YY7 _ al)C * d3-
P - XYZ - 72V

*

La cubique, suivant laquelle le plan tangent coupe la surface,
a donc pour équation:

729p9
~ abc d3 ' (3'

D'autre part, on a:

-g- X triangle ABC X d i X OA X OB x OC ;

a a -f b$ + Cy (4)
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Cherchons les coordonnées triangulaires du point de contact;
dans la formule (2), supposons Z z ; il en résulte:

7 v.
cd

par analogie:

a _ V! p __ V~ ad ' 1

bd '

A titre d'abréviation, nous poserons:

9p3
~d 1 (6)

les équations (3, 4, 5) deviennent alors :

mQ
cubique : aßy ; ,7)

abc x

condition : a a -f bp -f cy 3m2 ; (8)

(9)

point de contact : n — • ß — — • y — —
« /> ' ' c

«a — & ß — cy — mz

Les dernières équations prouvent que le point de contact est
le centre de gravité du triangle ABC (30).

33. — On sait que tout plan, tangent à une surface, coupe
cette surface suivant une courbe à point double. Dans le cas
actuel, nous obtiendrons une cubique acnodale [3°, a], qui
généralisera celle du n° 11. En opérant comme pour cette dernière,
nous allons rechercher les coordonnées d'un point quelconque
de la courbe. Une droite, passant par le point a

pour équation:

lia -}- cß -f- wy — m2(— -j- A 4-
\a b c J

(10)

En résolvant les équations (7, 8, 10), on trouve:

am2[cv — bw)2
a

bc[av — bu) {aw — eu)

puis ß, ypar permutation tournante. Ces équations prouvent
que la courbe envisagée est unicursale.
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34. — Examinons enfin la section faite par un plan parallèle

au plan tangent, c'est-à-dire par un plan quelconque. Cherchons

si la cubique rencontre les médianes du triangle de référence.

Nous aurons les équations:

cubique : aßy =r k3 ;

médiane : b ß cy ;

condition : a a -f- b ß -f- c y 3/?i2

On cherche d'abord une équation en «, en éliminant ß et y:

a2 a3 — 6am2a.2 -f- 9/?i4a — 4bck3 z=z 0

D'après un théorème de Descartes, cette équation n'admet

aucune racine négative, ou bien elle en admet une et une seule,

suivant que la constante k est positive ou négative.
On cherche ensuite une équation en /3, en éliminant a et y:

1 3bjn2 1 2b2 _
ß3 ack3 '

ß ack3

On forme le discriminant de cette équation, et l'on arrive aux
conclusions suivantes :

k3 < 0 cubique unipartite non singulière [2°, a] ;

k3 0 cubique dégénérée en trois droites ;

mG
0 < k3 < ^ cubique bipartite [1°, a] ;

k* ~ ~âbc cu^)^(îue acnodale [3°, a] ;

?ïiG
k3 > ^ cubique unipartite non singulière [2°, a].

Cette discussion ressemble beaucoup à celle du n° 10. Elle
reste la même, que le triangle de référence soit acutangle ou
non (32).

De cette discussion, l'on peut déduire le théorème suivant:
Si l'on demande le lieu géométrique des points dont les

distances aux trois côtés d'un triangle ont un produit constant, et
si l'on détermine cette constante de manière que la cubique soit
unicursale, elle sera toujours acnodale, et le centre de gravité du
triangle sera le point double isolé.
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i 6. — Sections sphériques.

35 nous allong étudier rapidement la courbe d'intersec-
tion de la surface:

xyz p3
et de la sphère:

x'2 + y2 -j- z2 a2 (<2)

En éliminant s entre (1)) et (2), on trouve:

(x2 +j2 —+ (3,

L'intersection complète des surfaces (1) et (2) est une courbe
gauche algébrique du 6e ordre, composée de quatre parties,dont chacune entoure la projection d'un ombilic sur la sphère.

Cette courbe gauche possède encore la symétrie du tétraèdre
régulier.

Elle se projette sur le plan des x, y suivant la sextique que
représente 1 équation (3). On a nécessairement:

*2 + J2 — a2 < 0

Donc, la sextique, qui se compose évidemment de quatre
ovales, est intérieure au cercle: xl + y2 a2.

La courbe ne rencontre pas les axes.
36. — En résolvant l'équation (3), on obtient:

2 xfx{a* — x2) ±y.x6— 2a2x4 + a*x2 — 4//«

Examinons le cas où l'on aurait: 37 La quantitésubradicale deviendrait alors :

(x2 — p2)2(x2 4p2)

Or (35) x est moindre que a ; donc: x* < 3 La sextique
se réduit à quatre points isolés: ce sont les projections des ombi-
lies sur le plan des x, y.

37. — L'équation polaire de la sextique est la suivante:
p4 sin2 0 cos2 6 (a2 — p2) — pQ f ^ou bien:
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38. — Le maximum et le minimum de 9 correspondent au
minimum de sin 29, donc au maximum de:

p4(a2 — p2) (p2)2 X (a2 - p2)

Les rayons vecteurs correspondants sont donnés par l'équation:

donc:

a\/i-
On trouve ensuite :

• > Ofl V6 27P6sir 2 0 — -7 — — —V-4.1. a6
— rt4 x — a2

d'où:
dp3 V3"

sin 2 6,„ ± ±Ç£)'
Cette valeur est toujours acceptable quand la sphère coupe la

surface proposée, c'est-à-dire quand on a:

a ^ p •

Les valeurs de 9m et les valeurs correspondantes de p pourront
être construites à l'aide de la règle et du compas. On voit
aisément qu'on obtient ainsi huit points dé la sextique, et les

tangentes en ces points. De l'origine, on peut donc mener huit
tangentes à la courbe. Ce sont, d'ailleurs, quatre bitangentes.

39. — Recherchons le maximum et le minimum de p. Soit
F(p, 9) 0 l'équation (4) du n° 37. On a:

^ + ^9 0;
öp

^ ^ 0 0

Mais dp 0, donc ~ 0, c'est-à-dire:

^(sin26 cos2 6) 0 d'où 6 ~du 4

Comme la sextique ne rencontre pas les axes coordonnés (35),
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on ne peut donner à k que des valeurs impaires. Il suffit d'examiner

: 9
4

L'équation polaire de la sextique (37) donnera les valeurs
correspondantes de p :

p4(fl2 _ p2) -- 4/?6

ou bien:
p6 _ a2p4 + 4^6 _ 0

Cette équation, du troisième degré en p2, admet toujours une
racine négative, qui est à rejeter. Les deux autres sont positives
quand on a : a ^ pl/3.

40. — La sextique admet 4 Q 24 bitangentes.
De la discussion qui précède, ainsi d'ailleurs que de son équation

cartésienne (35), il résulte qu'elle admet la symétrie du
carré. Dans son plan, elle possède quatre axes de symétrie A2 ;

perpendiculairement à son plan, un A4.
41. — On arriverait à la même sextique en étudiant la

surface:

xyz — — p3

Ce fait s'explique, de soi-même, si l'on se rappelle que la symétrie

tétraédrique est une hémiédrie de la symétrie cubique.
42. — Nous allons chercher l'équation de la sextique gauche

(35) en coordonnées sphériques trilinéaires absolues. Nous
emploierons un système que
nous a suggéré M. Louis
Fouarge, chargé de cours à

l'Université de Liège.
Une sphère, ayant son

centre à l'origine, coupe le
trièdre coordonné suivant
un triangle trirectangle ABC,
que nous prendrons comme
figure de référence. D'un
point quelconque M, nous
abaisserons, sur les côtés du
triangle fondamental, les

perpendiculaires a, /3, y. Soit
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OA OB OC — m le rayon de la sphère. On a encore

OM m. Les formules de transformation sont:

X zzz m sin a ; y zzz m sin ß ; s zzz: m sin y

De l'équation de la sphère: x" + yf1 + z2 on déduit:

sin2 a -f- sin2 ß -J- sin2 y 1 9

Un système de coordonnées sphériques n'est entièrement
déterminé que si l'on connaît l'équation d'un grand cercle.

Dans le n° 1 de la 14e année (novembre 1911) du Bulletin

scientifique de l'Association des Elèves des Ecoles Spéciales,

(A.E.E.S., Université de Liège), MM. V. Lejeune et A. Schlag
ont donné l'équation d'un grand cercle, en employant les

coordonnées:

p rr BM ; w z= angle AB M

Cette équation peut s'écrire (loc. cit., page 17):

te o — : (2)
1 V cos to -j- W sin to

De la considération des triangles sphériques rectangles MRB,
MPB, on tire:

sin y zzz sin p sin to sin a :zz sin p cos to ;

l'équation (2) peut s'écrire:

sin p^ ^ V sin a -f- W sin y

ou:
V sin a -j- W sin y zzz cos p ;

mais on a:

P ï-Pi
l'équation d'un grand cercle peut donc s'écrire:

a sin a -f- /; sin ß + c sin y zzz 0 (3)

On en conclurait aisément l'équation du grand cercle passant
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par deux points donnés de la sphère, puis celle du grand cercle
tangent à une courbe donnée en un point donné.

Si le point M doit appartenir à la surface tétraédrique que nous
étudions, il faudra qu'on ait:

sin a sin ß sin y —

En discutant les signes, on verra que l'équation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la courbure

totale, en un point ordinaire d'une surface, est l'inverse
du produit des rayons de courbure principaux (19). Elle est
susceptible de l'expression suivante:

Ö2; y
£ _ àx2 '

ÖJ2 \ùX (V)" J

!1 + (S) + (|)2 j"

44. — Appliquons cette formule à la surface :

xyz 3

Les dérivées partielles ont été données plus haut (22). On a,
après un calcul facile:

^ 3p6xéyAzi 3~ ?q T*=' ++ «vp=j i, + i + JJ
3p6m 12,

j y* z2 4- *2.T2 -j- X2y2 J2

Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points
elliptiques.

45. — De la formule (1), on déduit que c'est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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la surface a la même courbure totale. D'après la formule (1), on

doit avoir :

1 1 l _ i
P + 7+?-7' '

Cette équation représente des surfaces algébriques du sixième

ordre, à huit nappes, admettant les plans

x — + c ; y — zh c ; s + c ;

comme plans asymptotes. L'origine est un point quadruple
isolé. Toute section faite dans l'une de ces surfaces par un plan
parallèle à un plan coordonné, est une krenzcurve.

On obtient un résultat d'apparence plus simple en considérant

l'équation (2). Une ligne de courbure totale constante est

représentée par les équations:

y2z2 -f- z2x2 + x2y2 — a4 xyz — p3

On pourrait faire ici la même remarque qu'au n° 41.

47. — Au n° 31, nous avons trouvé la longueur de la
perpendiculaire abaissée de l'origine sur le plan, tangent à la surface,
au point (#, y, z) :

3"3

Vj2-2 + + #2y2

Il en résulte:

d*=
| j2/ + s2/2 + oc*y* I*

'

En comparant cette formule à la formule (2) du n° 44, on
trouve:

27//

Théorème: Si, en chaque point d'une ligne de courbure
totale constante, on mène le plan tangent à la surface, tous ces
plans enveloppent une sphère, dont le centre se trouve à l'origine.

Cette propriété est encore compatible avec la symétrie de la
surface (41).

(A suivre).


	APPLICATIONS GÉOMÉTRIQUES DE LA CRISTALLOGRAPHIE
	Introduction.
	Chapitre premier.  Etude détaillée d'une surface tétraédrique.
	§ 1. — Etude sommaire de quelques cubiques planes.
	§ 2. — Symétrie du tétraèdre régulier.
	§ 3. — Forme générale de la surface. — Ombilics.
	§ 4. — Sections planes.
	§ 5. — Propriétés du plan tangent.
	§ 6. — Sections sphériques.
	§ 7. — Etude de la courbure.



