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SUR LE NOMBRE e.

PAR

Michel Petrovitch (Belgrade).

1. — Le développement classique exprime le nombre e sous
la forme de somme de fractions rationnelles ayant pour
numérateurs l'unité. L'identité

n=x>

(a0 + a, x +a,«* + + apx ^ M„-r" -
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fournit le moyen d'exprimer e, et cela d'une infinité de manières,
sous la forme de somme de fractions rationnelles irréductibles
ayant pour numérateurs des entiers autres que 1. Et en
particulier:

Il est possible d'exprimer e comme somme de fractions rationnelles

irréductibles ayant pour numérateurs la suite naturelle de

nombres premiers impairs

1, 3, 5, 7, M, 13, 17,

En effet, l'identité
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fait voir, pour x — 1, que
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D'après la conséquence connue du théorème de Wilson,
lorsque n + 1 est composé et n > 3 on a

ni
nombre entier

n -}- 1

et lorsque n + 1 est premier, on a

ni
— nombre entier

n -p 1 n + 1

Il s'en suit que les /„ sont des fractions rationnelles, lesquelles,
réduites à leurs plus simples expressions, ont pour numérateur 1

lorsque 72 + 1 est composé, et 72 + 1 lorsque c'est un nombre
premier, ce qui démontre la proposition.

Le nombre e se laisse ainsi exprimer sous la forme

/Jrzzcc
I Pn

<ln

où qn, sn sont des nombres entiers tels que, la fraction — étant
(l n

réduite à sa plus simple expression, p„ soit le n]èmâ terme de la
suite naturelle de nombres premiers impairs.

2. — Au point de vue de la propriété arithmétique précédente

le nombre e n'est qu'un cas particulier d'une classe plus
générale de nombres jouissant de la même propriété.

Soient a0, des nombres entiers quelconques et
considérons la fonction

«') ÖT5" + tï^ + 2Ï^+~
holomorphe dans tout le plan de la variable x. On a

d r rt U V? f/Z + 1bx"

u

et par suite

m)+ rm_<3X"
- a„

o
2:

où est le nombre précédent (2).
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Le nombre

m m + rw

se laisse donc exprimer sous la forme de somme de fractions rationnelles

irréductibles n'ayant pour numérateurs que des nombres
premiers.

Dans le cas où a;l n'est pas divisible par n + 1 pour n -f- 1

premier, le nombre M se laisse exprimer sous la forme (3). Tel
est, par exemple, le cas de

an (n l)k
> % (,l + 2) (,l lf > elc"

k étant un entier positif. Le nombre e correspond au cas particulier

où

a/i - 1 f(*) e*.

Etant donnée une fonction cp(x) développable pour \x \ ^ 1 en
série de la forme

1 X X2
*(*) r+ 7 + - + •••a0 ai 2

les oc a étant des entiers quelconques, il est possible d'en former
un nombre précédent M sous la forme d'une intégrale définie
portant sur des combinaisons simples de cp(x). On partira des

formules connues exprimant le nombre ~ sous forme d'une

intégrale définie, à l'aide de laquelle en exprimera la fonction f(x)
à l'aide de cp(x). Telles seraient, par exemple, les formules
suivantes :

TT

1 2I 2 z1

- / ecost cos (sin t) cos ni dl
o

TT
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n tu J v

± _lZ r
fl- ~~

2 TT r" J
ac » cti

dtn\27CC "^[a
(c et la partie réelle de a étant des quantités positives).
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