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SUR LE NOMBRE e.

PAR

Michel Perrovircu (Belgrade).

1. — Le développement classique exprime le nombre e sous
la forme de somme de fractions rationnelles ayant pour numé-
rateurs I'unité. L’identité

n—x
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fournit le moyen d’exprimer e, et cela d’une infinité de maniéres,
sous la forme de somme de fractions rationnelles irréductibles
ayant pour numérateurs des entiers autres que 1. Et en par-
ticulier:

Il est possible d’exprimer e comme somme de fractions ration-
nelles vrréductibles ayant pour numérateurs la suite naturelle de
nombres premiers impairs

1, 3,5, 7, 11, 13, 17,
En eftet, I'identité

(x+1)e-”:2 ”flx" (1)

fait voir, pour x = 1, que
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D’aprés la conséquence connue du théoreme de Wilson,

lorsque n 4 1 est composé et n > 3 on a

n! .
— nombre entier

n—+1
et lorsque n 4 1 est premier, on a
n! ) 1
— nombre entier — ——— .
n—+ 1 n—+ 1

Il ’en suit que les j, sont des fractions rationnelles, lesquelles,
réduites a leurs plus simples expressions, ont pour numérateur 1
lorsque n 4 1 est composé, et n 4 1 lorsque c’est un nombre
premier, ce qui démontre la proposition.

Le nombre e se laisse ainsi exprimer sous la forme

n—co

1 N Pr
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2 S + il q ' s}
n=—»0 n "

\ : . P,
Ol Pu,y ¢uy S. sOnt des nombres entiers tels que, la fraction = étant

T

réduite & sa plus simple expression, p, soit le ni™ terme de la
suite naturelle de nombres premiers impairs. ' ‘
2. — Au point de vue de la propriété arithmétique précé-
dente le nombre e n’est qu’un cas particulier d’'une classe plus
générale de nombres jouissant de la méme propriété.
Soient «,, o,, a,... des nombres entiers quelconques et consi-
dérons la fonction

holomorphe dans tout le plan de la variable z. On a

-(%. [.71?/'(0(:)] — E ki /—zi_' i}x

n
U

et par suite
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ou 2, est le nombre précédent (2). |
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Le nombre

W= s

se laisse donc exprimer sous la forme de somme de fractions ration-
nelles irréductibles n’ayant pour numérateurs que des nombres
premiers.

Dans le cas ol a, n’est pas divisible par n 4 1 pour n + 1
premier, le nombre M se laisse exprimer sous la forme (3). Tel
est, par exemple, le cas de

v, =), o« =(n 4 2, et
k étant un entier positif. Le nombre e correspond au cas parti-
culier o

%, = 1 flx) = e”.

Etant donnée une fonction g(x) développable pour |z|> 1 en
série de la forme

0'.1 O(Z

1 2
q)(:t"):;——]—f—}-%—-—l—,

les «, étant des entiers quelconques, il est possible d’en former
un nombre précédent M sous la forme d’une intégrale définie
portant sur des combinaisons simples de ¢(z). On partira des

: 1 L
formules connues exprimant le nombre — sous forme d’une inté-

grale définie, & Paide de laquelle en exprimera la fonction f(z)
a Paide de p(z). Telles seraient, par exemple, les formules sui-

vantes:
s

1 2 1 cost .
——‘_—_-—L/ e cos (sin t) cos nt di
n! s

0

brg
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— == —fe sin (sin ¢) sin nt dt
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0

! “ f ¢ dt
ntened (@ 4ouptt

(c et la partie réelle de a étant des quantités positives).
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