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SUR LES SÉRIES ENTIÈRES,
DONT LA SOMME EST UNE FONCTION ALGÉBRIQUE

PAR

G. Pölya (Zurich).

1. — Outre la formule du binôme on connaît depuis l'époque
d Euler plusieurs exemples de séries simples, dont la somme est
une fonction algébrique, par exemple, la série de Lambert,
servant à la résolution des équations trinômes. Ces divers résultats
sont, croyons-nous, contenus comme cas particuliers dans le
théorème général suivant :

Soient y (z) et $ (z) deux fonctions algébriques régulières
autour du point z 0. Posons

Aoo + A01z + A02;2 + A03;S +
4>U)o(îl A10 + An* + A12;2 + A]3 +

<S>(z)9(zf-A20+ A21 s + A 22A + A23s3 +
Aso + A3,z + A32S3 + A33C3 +

et disposons les termes de ce tableau c'est-à-dire
de la manière suivante: après avoir choisi un axe des x dirigé
de haut en bas et un axe des y dirigé de gauche à droite, convenons

d'écrire le terme Akl zl au point x k, Traçons dans
ce tableau une droite quelconque non parallèle à l'axe des x ;
Vensemble des termes disposés le long de cette droite forme une série
entière dont le rayon de convergence est différent de zéro et dont la
somme est une fonction algébrique.

Dans cet énoncé, les fonctions rationnelles sont considérées
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comme des fonctions algébriques particulières. S'il n'y a qu'un
nombre fini de termes le long de la droite en question, l'ensemble

de ces termes forme une fonction rationnelle entière; dans ce

cas-là, le théorème est trivial. Si la droite est horizontale, parallèle

à l'axe des y, le théorème est encore évident, le produit de

deux fonctions algébriques étant algébrique. Si la droite est

verticale, la série obtenue peut être divergente (c'est pour cela que
ce cas a été écarté dans l'énoncé) mais si elle converge, elle représente

une fonction rationnelle particulièrement simple.
Il y a encore un cas où le théorème est évident. En posant

2tti

f(z) =z a0 -i- atz + a2z2 + a3z3 + w e
k

;

on a

+ «i+N+t + «n.u*i+ït + -
__

f(Z) + W~lf{(X>z) + f(ùi2 z) + + CO~11 z)
_ _

et cette dernière fonction est algébrique si f(z) l'est. Voilà à quoi
se réduit essentiellement le théorème, si <p(z) azn\ a étant une
constante, m un nombre entier, m > 0.

Le tableau le plus simple du genre considéré est le triangle de

Pascal, que j'écris comme suit:

1

i + *
1 + 2z + s2

1 q- Sz + 3Z.2 .3

1 + 43 + 6z2 + 43s + 34

(On a dans ce cas-là O(z) ; 1, <p(z) — 1 + z.) Les droites
parallèles à la bissectrice des deux axes rectangulaires contiennent
des séries entières dont la somme est rationnelle, — (1—z)~ 1

(1 — z)-'2, (1 —... La droite passant par les trois termes
en caractères gras engendre la série

1 + 23 -p 6z2 +

— N? 7n - N? t.3,5 2n - 1 2n 1

J—A \ n 2.4.6 2n 77\
n=o 7

n=o V1 — *z
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Les points du plan, dont les coordonnées rectangulaires
sont des nombres entiers non négatifs, forment un réseau. Nous
avons à nous occuper des droites qui passent par une infinité
des points de ce réseau, sans être parallèles à un des deux axes.
Ces droites ont une équation de la forme

ay—bx—q (1)

où a, è, q sont des entiers, a > 0, b > 0. Le plus grand commun
diviseur de a et de b doit diviser q ; il peut être supposé, sans
restriction, égal à l'unité. Toutes les solutions de (1) en nombres
entiers non négatifs peuvent être représentées par une formule

— c + an y ~ d q- bn \n =z 0, 1, 2, 3,

n 0 donne la «plus petite» solution de ce genre, $= c, y d.
Il s'agit donc de la somme de la série

00

2A^"^+''«^+A" F<J) • (2)
n=0

On a

a _ 1 r$(«>du
c+an, d+bn ~2r.Jud+bn' V ' (3)

L intégration est étendue le long d'un contour circulaire
\u\ r, r étant choisi de manière que l'aire \u\ .§ r ne contienne
aucun point singulier des branches considérées des fonctions
algébriques cp(u) et <P(u). (Plus tard r sera assujetti à une
nouvelle condition.) Soit sur la circonférence \z\ r

| <p (m) I ^ k | <ï> (m) I K

On a alors d'après (3)

| K+an,d+ö«\<

ce qui montre que la série (2) converge sûrement dans le cercle
a

| z f < rk %

On a d'après (2) (3)

P/-1 _ 1 C"!>(«)9(a)csd XA 9(«)a^\" duW~ 2tAJ ~
„«*

n=0 K /
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la série géométrique étant convergente pour \$\ assez petit, d où

l'on tire
zd c ub~'d~~1 <!>(") du

r«=ûJ-- • "
Considérons les racines multiples u qu'on obtient en égalant

à zéro le dénominateur de la fraction à intégrer. Elles satisfont

aux deux équations simultanées

ub — Zb®(u)a 0 bub~l — azbo{u)a"l^(u) 0

d'où résulte
au ®'{u) — bo(u) — 0 O)

Si cette dernière équation est identique, on aura f(u)'1 Cub,

où C est une constante. Je laisse de côté ce cas qui peut être traité

directement, comme je viens de le faire remarquer.
L'équation (5) a un nombre fini de racines.

On peut choisir le chemin des intégrations (3) et (4) c'est-à-

dire le contour circulaire \u\ r de manière qu'il ne contienne

qu'une racine ou qu'il n'en contienne aucune, suivant que le

point u — 0 est ou n'est pas racine de (5). Le rayon r étant choisi

définitivement, je prends z assez petit en valeur absolue pour
qu'on ait sur le contour \u\ r

\u\b > uTlyN I*-

D'après le théorème de Rouché, l'intérieur du contour \u\ r
contient exactement b racines de l'équation ub — zb (f(u)a 0;

u =z 0 peut être une racine multiple, mais les autres racines

contenues à l'intérieur du contour \u\ r sont sûrement simples

d'après le choix de r. On a ß S b.

L'intégrale (4) étant égale à la somme des résidus relatifs aux
pôles à l'intérieur de la circonférence \u\ r on obtient d'après
la discussion précédente

p D K)
F (s) R (z)+ > —g^ »

• (6)
bu — az cd u, } cd (//,,)
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R(z) est 1er résidu correspondant au point u 0.

R(z) est une fonction rationnelle, qui peut se réduire à 0. On
sait que les fonctions algébriques d'une fonction algébrique sont
algébriques, ainsi que la dérivée d'une fonction algébrique ; donc
uA, Wc2, sont algébriques, chaque terme de la somme dans
l'équation (6) est algébrique et F(z) est aussi algébrique, c. q. /. d.

3. — Comme premier exemple, posons <h(z) 1, <p {z)
1 + ^ et considérons avec Euler 1 le tableau

1

1 + Z + s*

1 + 2z + 3z2 -f- 2s3 + s4

On trouve la somme de la série qui commence par les termes
en caractères gras d'après la méthode exposée.

1 -f£ + 3s2+ 7s3 + 19c4 4- ...=JL f ^— L_
2%iJ u — z[l u -\- u2) 1 — s(l -{- 2f/1)

désignant la racine de l'équation w — z (1 + u + u*) 0 qui
se réduit à zéro pour z 0. On a donc

1 _ z _ y i — 2z — 3s2
Ml _ _ a

1 s 3.2 + 7z3 19^4
1

_ #yi _ 2z — 3 s2

résultat dû à Euler, /oc. cit. 1.

Je considère un second exemple. Je désigne par
a, ß deux nombres rationnels, par
a, b deux nombres entiers non négatifs.

Je pose $(z) (1 + z)a, cp(z) — (1 + z)$ et je considère la
droite y a + bx. J'obtiens la série

2/a + ß n\ „a+bn
la + bn)*

77 0

1 L. Euler. Opuscala analytical Tomus I (Petropoli, 1783), p. 48-62.
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dont la somme est une fonction algébrique de 2 ainsi que la

somme de la série

a + pft'
a -[-• bn

?I U

D'après une remarque faite auparavant, l'évaluation de cette
dernière série se ramène facilement à l'évaluation de celle-ci: 1

/a + ß7i\ n _J_ r (4 -f- il)* du s\ |7)
n ' U—2(1 + u1 — ßst'f"1

où l'on désigne par et la racine de l'équation trinôme

— r + 1 0 (8)

qui se réduit à l'unité pour z =« 0 (1 + u « c). La formule (7)
contient un grand nombre de cas particuliers intéressants. La
série (7) reste inchangée si l'on change simultanément

a en — 1 — a

elle se réduit à la formule du binôme pour ß 0 et ß 1 ; elle
a une somme très simple, si ß 2 ou ß — l — 2 — 1. On
obtient d'après (7) en résolvant l'équation trinôme (8) qui devient
quadratique pour /3 2

< + ("î2V + (*î'')-' + (*î6)=*+~

Vi

Cette formule était aussi connue (I'Euler 2 qui donne à la

1 M. Hurwitz, dans ses exercices, a posé le problème suivant : en admettant que ß est
rationnel, démontrer que

2 (':)•"
n — a x 'n=0

représente une fonction algébrique. C'est ce problème qui, conjointement avec le problème
d'EuLBR précité, m'a suggéré le théorème général que je viens de démontrer.

2 L. Euler. Opera postuma, Tom. 1 (Petropoli, 1862), p. 299-314.
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somme la forme équivalente

•2 y*—1—.
VI + VI — i;/ Vi — 1-

On a d'après (7)

V - /! + ß«\ _ 1 "V 1 + ß« / ß"
l—ßjpß-1 + V n /" ~~ +" 1

0

" _ rj. X /P + l'"\ _«_Vf/

On obtient par soustraction

oc

l'l 1 + 2 ß»
n — 1

ce qui est la série bien connue de Lambert 1 écrite sous une
forme simplifiée; elle donne la solution de l'équation trinôme (8)
qui se réduit à 1 pour z 0.

En mettant w — e* on obtient par un calcul analogue la solution

wi de l'équation trinôme plus générale

p 1

zw* — + 1—0

+ a21
n

H=\

z11 la + ß/i — 1

n — 1

wi se réduisant à l'unité pour ; — 0. D'autre part, en changeant
simultanément dans les formules (7) et (8)

V z
v en 1 + -g t z en —

P P

on obtient pour ßoo les séries simples

"1 1 '

n=() n=1

1 Voir p. ex. Encyklopœdie d. mathem. II, B. 1 (Osgood), p. k
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c, désignant la solution de l'équation transcendente

ze{' — r 0

qui se réduit à 0 pour z 0 et à 1 pour z e~~l.

4. — J'expose deux problèmes caractéristiques, où les calculs

précédents peuvent être utilisés.
En jetant 2n dés à la fois, on peut obtenir différentes sommes

de points de 2n à i2n. Le cas le plus probable est celui de 7 n

points. Désignons par A„ le nombre des combinaisons où se

produit cet événement, de manière que A„ soit la probabilité
d'amener In points avec 2n dés. Je considère la série

1 + Atz -f A2-2 + Ass3 + • d°)

Comme on sait A„ est le coefficient de u~n dans le développement
de la puissance (u + u~ + u3 -f- ué + uh + u3)2'1.

On a donc

/•(« + «*+...+ «e»2n du

2ja : =2,2ViĴ T
/;=() //=0

1 r* lâdu
2~i J u'° — c (1 +• u -j- —f- w5)2

d'où l'on conclut par le raisonnement précédent que la série

envisagée (10) représente une fonction algébrique.
Euler a fait connaître la remarquable transformation de

séries

r
/;=(> s=2»

qui porte son nom et qui joue un rôle important dans certaines
recherches modernes sur les séries entières h On désigne comme
d'habitude par A" ar l'expression

Anar~ an+/, — ^
a

^ an+r_{ + ^ ^ an+r-2 ~ • • + ar •

Les quantités a0, A a0, A2a0, interviennent dans la solution

de ce problème : trouver un polynôme de degré A n. prenant
des valeurs données a0, a.2, an aux points successifs z

1 Voir p. ex. Pringsheim. Ueber einige funktionentheoretische Anwendungen der Eulerschen
Reihentransformation. Sitzungsber. München, 1912, p. 11-92.
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0, 1, 2, n. C'est ce que j'appellerai le problème de l'interpolation
unilatérale ou Newtonienne. Comme interpolation bilatérale

ou Laplacienne 1 je désignerai le problème suivant: chercher un
polynôme de degré <; 2n prenant des valeurs données aux
2^ + 1 points

z — n — n -f- 1 — 1 0 + 1
f n — 1 n

Je me suis proposé de chercher une transformation de séries
qui ait le même rapport à l'interpolation bilatérale que la
transformation d'Euler à l'interpolation unilatérale. J'ai trouvé qu'il
faut distinguer deux cas; le cas pair et le cas impair. Bref, je suis
arrivé aux formules suivantes :

en supposant a__„ *= an (12)

1 1 /i -h 2/ - Vi + 4A" f i " _

vnf^r U-.+2H — !=Ï2' 1 •-1 " 1 AS= 0

en supposant — an (12')

l ^ /1 + 21 — yr+TAn 1 ~
0

21 ~~ ~î 2 1 "
a—n+\ — a—n—l)

n=1 n— 0

Je démontre la première de ces formules. On a, k désignant un
entier :

_i /i + 2/ — vr+TA*_ tk /i - yr+-4i\s*
yi + 4A 2 tJyr+T( V - n

d'après la formule (9). En substituant cette expression dans la
formule (12) on obtient

"o
- _|

1 y/1 -V1 + 4<y*
2 y 1 -f_ 4f yi + gd kV-2< /

92 CD I- T « + 22 f" t ")
w=G k= 1

X 7

=f2C:)'-.)»." + 2'"2<-*i'(2;y„-,. «.3,
w=0

*

«=1 /==<)
X 7

1 Laplace. Théorie analytique des probabilités, chap. I, n» 4.
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J'ai introduit le nouvel indice de sommation n par l'équation
n k + l. Remarquons qu'en vertu de la supposition a_m a/7I,

on a

Donc la dernière ligne de la formule (13) peut être écrite
comme suit :

OB 2«

=42<"2
»=() 1—0

ce qui démontre la formule proposée (12).
J'ai démontré autrefois 1

que la plus petite fonction entière
transcendante qui prend des valeurs entières pour z *= 0, 1, 2, 3,
est la fonction simple 2Z et que la plus petite fonction entière
transcendante qui prend des valeurs entières pour toutes les

valeurs entières

_ n _ 2, — 1, 0, + 1, + 2, + n,

de z est la fonction impaire

i_ j ^3 + VFy ^ 3 - V5-y* j

Le premier et le second de ces théorèmes ont le même rapport
entre eux que l'interpolation unilatérale et bilatérale ou bien que
la transformation d'EuLEu et les nouvelles formules (12) et (12r).

1 O. Polya. U^-ber ganze ganzwertige Funktionen, Rendiconti, Palermo, T. 40 (1915, 2),
p. 1-16. — Gröttinger Nachrichten, 1920, p. 1—10.
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