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SUR LE RAYON DE COURBURE D’UNE COURBE

PAR

B. NiEwenGLowsk1 (Paris).

1. — Le rayon de courbure d’une conique en un point M est
donné par la formule
N3 .
R —_— '-[-)"2 s (1)

p désignant le paramétre de la courbe et N la longueur du seg-
ment MN de la normale en M, N étant sa trace sur un axe de
symétrie de la conique. |

Plus généralement, s’il s’agit d’une courbe plane quelconque,
en gardant les mémes notations, on a

N2 o ‘)2(1 + 3’2) ,
d’ou il suit que

et par conséquent

,‘Hl . (2)

La formule (1) se déduit d’ailleurs trés simplement’de (2) si
Pon prend pour axe des z un axe de symétrie de la conique consi-
dérée, I'origine étant 1'un des sommets situés sur . cet axe. En
effet, ’équation de la conique étant alors

= 2px 4 qa?
on a successivement
We=ptge. P4 n"=q, T4y =g?,
Yr' = q(2px + q2*) — (p + qx)? = — p? |

%" = p® .
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9. — Remarque 1. L équation (1) caractérise les coniques.
En effet, si cette équation est vérifiée on a

y?,y" —a ,

a désignant une constante. On en tire successivement

a
¥y =b — —

dy

¥ )

¥’ dy’ = a

b étant une nouvelle constante, et ensuite

et enfin
(x 4+ ¢)? = by? — a

¢ étant encore une constante.
3. — Remarque II. Le cas de I'hyperbole équilatére mérite
d’étre signalé. En prenant pour axes de coordonnées les axes de

symétrie, ’équation peut s’écrire

ce qui donne yy' = x ; alors N2 = y? 4 2? = r?, r désignant la
’13

distance du point M (z, y) au centre et dans ce cas: R=5.

h. — Cas o lon prend pour variable indépendante Uarc s de
la courbe plane que Uon étudie. Dans ce cas la relation entre le
rayon de courbure R et la normale N prend un autre aspect.

Les axes de coordonnées étant toujours supposés rectangu-
laires, si « désigne I’angle de la tangente en M (z, y) avec l'axe
z'x, on salt que

' x’ — cos a , y = sina,
d’ou |

x" = — sina.a’ 3y = cosa.a’ , et of = — ,

les dérivées x',y’, o, ', y" étant prises par rapport a s.
On en déduit '

9’ .
R:-—_—_——-x—j’. (3)
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D’autre part

N=_7 :)—‘,, donce R=_

coSs o x y"N

au signe pres; ou plus correctement

R:)L

N

Pareillement si N’ désigne la longueur de la normale comptée
Jusqu’a l’axe du y, on trouvera

% 1 -
R — .17' >< W . (4:/)
5. — APPLICATIONS. Courbes telles que R = -+ N.
1° Posons, en premier lieu
J%_ =5, ou aT=p

Mais puisque s est la variable indépendante, on sait que

2’2 4y =1
donce
=1

une premiére intégration donne
W =s 4+ h,

h étant une constante. En changeant 'origine des arcs par la
courbe, on peut supprimer £ et écrire

’

¥ =s
d’oti 'on tire
‘,).2 — 6‘2 + a2
a désignant la valeur de y pour s = o.
On en tire |
' i s x’ 1
- t " A
J Ve & af et par suite p Ve & at

ce qui donne, en supposant z = o pour s = o (ce qui est per-
mis car une translation paralléle & 2’ z ne change ni R ni N):

x x

VS2+a2_l_S:aea, "/s2—|—a2-—6‘:(l€ e,

g



ot et L
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On en tire
s=aSh=>
a
et par conséquent

X

L.a courbe est une chainette.
20 Posons maintenant

=, ce qui peut s’écrire — = =
d’ot
ou
’

=L
a

a désignant une constante arbitraire on a ainsi

)

o

l

1 — "2 =

[\

a

Mais si ’on pose &' = sint, ¥’ = cos ¢ on en tire: y = a sin¢
donec
’ ds

It .
Y= a cost--— et-par suite - == a
) ds - p dt

en prenant convenablement ['origine des arcs on peut donc poser

it = —et’on a
a
. S
VvV = a& Sin —
* a

, .S s

x' = sin — , donc T=—a cos— 4+ 7, ,
a a

et enfin

(2 — a)? 4+ 2 = a*

solution évidente a priori.

6. — Courbes telles que R = == 2N.
10 Posons tout d’abord

W n N4

,-,:2% : ou 2-'——:‘2T

8=

on en tire

P p Y
22 =1 — "=

a étant une constante arbitraire.

[’Enseignement mathém., 22¢ année; 1921 et 1922.
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La derniére équation pouvant s’écrire ainsi:

o4 — g
. Tt =
posons
Y a1 . . 1
o = siu 2t d’ou 3 _005—2—t
On en déduit
1 1
dy —= in — —t.d
y asm2t0052t.dt.
Mais
1
dy = y’ds = cos il.ds
ce qui entraine cette conséquence:
ds — a sinit.dt .
2
Mais
22 =1 — y? = sin? —¢ .
On peut prendre
, dx _ ;
= — — sIn —
* ds st 2 "’
donc
.1 A |
dx = 81n§tds = a sin?—t.dt .
En intégrant on obtient
x:%(t — sint) 4 x,
et 'on a déja
y:%(l — cos t) .
La courbe cherchée est donc une cycloide.
20 Soit maintenant
,),/ ,’ ‘,L,H :).l .
7:—-—2;—,, ou 2;6—;-—{—;__0.
On a ainsi
=2

a désignant une constante arbitraire.
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On a done

1—-3"2:% .

En posant 2’ = cos ¢, y’ = sin p on en déduit

a ,
y = . 5
J cos? ¢ )
2a sing .
dy = ———do = sing ds
cos®o
donc ‘
2ad 2ad
cds = a3cp et dx — (12<p
cos3 o _cos?o
donc enfin
x=2atgo + x, . (6)

En éliminant ¢ entre les équations (5) et (6), on trouve

. 2
y=a -+ ——————(x 4ax°)
équation d’une parabole.

7. — ExrtExsioN A L’Espace. Nous commencerons par la
formule (4). Nous prendrons trois axes rectangulaires et nous
appellerons N la longueur MN comprise entre le point M et le
point N ou la normale principale relative & M perce le plan zoy..

Les équations de la normale principale étant '

X—ax = Y—y L —z

—_ 7 o T N N
s’y — s s’z — z’s

x" — x's"

On en déduit aisément

N = —— .,,,z[(-*"x” — &SP 4 (s =y A (57— )]

Mais le crochet a pour valeur

NZ . 223,2[.%"2 + yng + an _ snz]

( 71 7 ,u)z

.5"2{1'"2—}— .7'”2_}— leZ . 5112} , done e p
A

D’autre part
s’
RH — "9 RI¥] 12 Sona
x4 27— s

On en conclut que
zs'3 «
R = = : (7)

(s'2" — &'s")N
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La variable indépendante est arbitraire — choisissons ’axe s
pour parameétre — il vient, puisqu’alors s’ = 1, s" = 0:

— 1. 8
R Z"N ( )

Pour obtenir une relation analogue a la formule (2), on peut
procéder de la maniére suivante:

La normale principale peut étre définie comme étant l'inter-
section du plan osculateur et du plan normal relatifs au point M.
Les dérivées étant prises par rapport a un paramétre arbitraire ¢,
si1’on pose

A —= ' — 2%y B = z'2" — 2’5" G = 9" — 'z
on reconnait que les équations de la normale principale peuvent
s’écrire ainsi:
X—2% _ YX—yr &—3
Bz — Gy Ca’ — Az’ Ay — Ba' '

et par suite:

~2
T2 < & A7\ 2 g ’_./ 2 g aY)
N* = (A}'/ —Bx'? [(B“‘ C) )? + (Ca ‘ Az 4 (Ay B.l ) ] .

Mais

(A 4 B o C2) (@ + 57 + %) = (A2’ + By’ + C&/)° + (Bz — Cy)?
+ (Ca’ — Ax')? + (A — Ba')? |

et st I’on remarque que
Ax" 4+ By + Cz/ =0 et '+ oy ="

on voit que
:28’2[A2 + B2 + C2)

e J—
N = (Ay” — Bz’)*
D’autre part
R = 5 T
(A2 4 B? 4 (C?)°
donc
1Ay — Ba')? N3

-3
Z

R:.

(A2+BE+C2)2 :
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Remarque. — Si dans la formule (9) on suppose y = o, c€ qui
revient & dire que la courbe est plane et tracée dans le plan des
yz, on a dans ce cas y' = 0, y" =0, par suite A =0 G =0 et
la formule se réduit a |

x’3

Z3(3;(1?” . .’11/3”)

R = N3,

14

formule qui coincide avec la formule (2) si 2" =1, 2" = 0
z remplacant y. |

Pareillement si ’on suppose la courbe plane et tracée dans le
plan des z, y la formule (7) donnera

1
'N )

ys’3

R =

;’5_7/371 _ ’)".S”

qui coincide avec la formule (4) quand s" =1, s" = 0.
Application. On peut mettre les équations d’une hélice cir-
culaire dont ’axe est pris pour axe des z, sous la forme

\ kT , | : :
ou b = \/a’~’ + Z—i—“ a étant le rayon de la section droite du
cylindre sur lequel 1'hélice est tracée et h le pas de cette hélice.
On trouve alors N = g, et puisque -, = — b?
e h?

R=—=a -+

« h2a
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