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SUR LE RAYON DE COURBURE D'UNE COURBE

PAR

B. Niewenglowski (Paris).

1. — Le rayon de courbure d'une conique en un point M est
donné par la formule

p désignant le paramètre de la courbe et N la longueur du
segment MN de la normale en M, N étant sa trace sur un axe de
symétrie de la conique.

Plus généralement, s'il s'agit d'une courbe plane quelconque,
en gardant les mêmes notations, on a

N»=y»(l +/>,
d'où il suit que

- N3
(i + y'2)2 -,.et par conséquent

La formule (1) se déduit d'ailleurs très simplemenUde (2) si
l'on prend pour axe des x un axe de symétrie de la conique
considérée, l'origine étant l'un des sommets situés sur cet axe. En
effet, l'équation de la conique étant alors

y2 2px -f- qx2

on a successivement

yy' p + qx y'2 + yy" — q y2y'2 + y3y" qy2

yZyji __ q^px 4- qx2) — {p + qx)2 z=z — p2

\fy" I p2
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2. — Remarque I. L'équation (1) caractérise les coniques.

En effet, si cette équation est vérifiée on a

f-y"

a désignant une constante. On en tire successivement

dy iy' dy' — a ~

bétant une nouvelle constante, et ensuite

ydy
clx ~ — —

V by2 — «

et enfin
(x + c)2 — by2 — a

c étant encore une constante.
3. — Remarque IL Le cas de l'hyperbole équilatère mérite

d'être signalé. En prenant pour axes de coordonnées les axes de

symétrie, l'équation peut s'écrire

ce qui donne yy' x ; alors N2 y2 + x2 — r2, r désignant la

distance du point M (x, y) au centre et dans ce cas : R -2.

4. — Cas où Von prend pour variable indépendante l arc s de

la courbe plane que Von étudie. Dans ce cas la relation entre le

rayon de courbure R et la normale N prend un autre aspect.

Les axes de coordonnées étant toujours supposés rectangulaires,

si a désigne l'angle de la tangente en M (x, y) avec 1 axe

%'x, on sait que
x' — cos a y' soi a

I d'où

x" — — sin a.a' y" — cos a.a' et a zz; ~

les dérivées x',y',oc', x", y" étant prises par rapport à 5.

On en déduit

H i - K,<3)

y x
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D'autre part

N — — — — donc R z= ——cos a x y" |f
au signe près ; ou plus correctement

1
R zz: X N '

Pareillement si N' désigne la longueur de la normale comptée
squ a 1 axe du y, on trouverajusqu a 1 axe du y, on trouvera

R zz: x N' '

5. Applications. Courbes telles que R ± N.
1° Posons, en premier lieu

xf y
ZJt — "T » ou x'2 )•)"y x JJ

Mais puisque s est la variable indépendante, on sait que

x'2 + j'2 1

donc

r/ -f j'2 1 ;

une première intégration donne

yr' ~ s -f- h

h étant une constante. En changeant l'origine des arcs par la
courbe, on peut supprimer h et écrire

yy' s

d'où l'on tire
j2 zz s2 -f- a2

a désignant la valeur de y pour s o.
On en tire

X
- m/~2—j .r » et par suite ay s2 -f «- * a yÄ2 a2

ce qui donne, en supposant x o pour s o (ce qui est permis

car une translation parallèle à xr x ne change ni R ni N) :

y x
V«2 -j- a2 s zz: aea y s2 -J- a2 — s zz ae a
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On en tire

et par conséquent

aSh -

y — a Ch -J a

La courbe est une chaînette.
2° Posons maintenant

y' y • x" f~ — — ce qui peut s écrire —= —
x" x ^ 1 x y

d'où

.r'
a

a désignant une constante arbitraire on a ainsi

r2i lâ•J a2

Mais si l'on pose x' — sin t, y' — cos t on en tire: y a sin t
donc

dt ds
r — a cos t et par suite —- — aJ ds dt

en prenant convenablement l'origine des arcs on peut donc poser

t — et l'on a
a

s
y ~ et sin —

a

s s
x — s ni— donc ,x - — a cos \- xn

a a 0

et enfin
(x — ,r0)2 -{- y2 — à2

solution évidente a priori.
6. — Courbes telles que R ± 2N.
1° Posons tout d'abord

on en tire

Ci— 2 — ou iV--'x" xr X y

** 1 - y'2 £
a

a étant une constante arbitraire.

L'Enseignement mathém., 22e année; 1921 et 1922.
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La dernière équation pouvant s'écrire ainsi:

y
a

posons

+ y'2 1

y 1 y
— — siu2 77 t d'où y' — COS — ta 2 J 2

On en déduit

Mais

l 1
dy — a sin —* cos —t. dt

1

c/j — jVs — cos — t.ds

ce qui entraîne cette conséquence:

Mais

On peut prendre

donc

J •
1

7as — a sin — t.dt

— 1 — y'2 m sin2 — tJ 2

dx 1
x — — — sin - fds 2

1 1
dx sin — a siu2 — t.dt

Z Z

En intégrant on obtient

a
X =z—(t — S 111 t) + x0

et l'on a déjà
a ,A

y y (i — cos 0

La courbe cherchée est donc une cycloïde.
2° Soit maintenant

^ -2 4, ou 2^ + 1=0x x x y
On a ainsi

*'2 -y
a désignant une constante arbitraire.
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On a donc
1 — j/2 -y

En posant x' cos <p, y' — sin 9 on en déduit

y

2a

(5)

Slll 9 7rfr zz= —- d® sin 9 as
cos 9

donc
2ad9 7 2ady

ds — -— et dx — 5—cos3 9 r
cos^ 9

donc enfin
x — 2a tg 9 + ^0 •

En éliminant <p entre les équations (5) et (6), on trouve

(x — x0)2
y — a + 4 a

équation d'une parabole.
7. — Extension a l'Espace. Nous commencerons par la

formule (4). Nous prendrons trois axes rectangulaires et nous

appellerons N la longueur MN comprise entre le point M et le

point N où la normale principale relative à M perce le plan xoy
Les équations de la normale principale étant

X — x Y — y Z — z

s'x" — x's" s'y" — y's" s'z" — z's"

On en déduit aisément

N* „,[!// - x's"f+ + (iV - *V')2]
(A- z ä s

Mais le crochet a pour valeur

j"2 + 3

D'autre part

s'*[X"* 4- + ~"2 - s"2] donc N2
/ /w„ _ „_ z2s'2[V'2 + y"2 + s"2 — s"2]
(s'z" — z's"f

R2
x"2 + y"2 + z/'2 — s"2

On en conclut que
R —

(s'z" — z's"} N
(7)
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La variable indépendante est arbitraire — choisissons l'axe 5

pour paramètre — il vient, puisqu'alors s*' 1, s" 0:

R
z"N

Pour obtenir une relation analogue à la formule (2), on peut
procéder de la manière suivante:

La normale principale peut être définie comme étant
l'intersection du plan osculateur et du plan normal relatifs au point M.
Les dérivées étant prises par rapport à un paramètre arbitraire t,
si l'on pose

A y'z" — z'y" B — z'x" — x'z" C x'y" — fx"

on reconnaît que les équations de la normale principale peuvent
s'écrire ainsi:

X — x _ Y — T Z — jç

Bs' — Cr' Cx' — A z' Ay' — Bx'

et par suite:

(Ay' — Bx'_[(Bz' — Off -f Cx' — A z')* + (A/ - Bx'pJ

Mais

(A2 + B2 + C2) (x'2 + y'2 + s,s) (A*' + Bf + Gz/)2 + (Bz' - C/)2

+ (Cx' — Ax')2 + (Ay' — Bx')2

et si l'on remarque que

Ax' + By' + Cz' 0 et .r'2 -f y'2 + z'2 — .s'2

on voit que

D'autre part

va __
-26-/2[A2 + B2 + C2)

1 - (Aj/ - Bz')2

K 1=

(A2 -j- B2 + C2)2

donc
Af — Bx')3

(A2 + B2 + C2)2
(9)
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Remarque. — Si dans la formule (9) on suppose y o, ce qui
revient à dire que la courbe est plane et tracée dans le plan des

yz, on a dans ce cas y' 0, y" 0, par suite A 0 C 0 et

la formule se réduit à

R
3(3V - X'Z»)

formule qui coïncide avec la formule (2) si x' 1, x" — 0

3 remplaçant y.
Pareillement si l'on suppose la courbe plane et tracée dans le

plan des x, y la formule (7) donnera

ys X

qui coïncide avec la formule (4) quand s' 1, / » 0.

Application. On peut mettre les équations d'une hélice
circulaire dont l'axe est pris pour axe des x, sous la forme

y — a cos - a s in —
b

hs

2 T. b

où b ^a2 + a étant le rayon de la section droite du

cylindre sur lequel l'hélice est tracée et h le pas de cette hélice.

On trouve alors N a, et puisque - — è2
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