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18 M. WINANTS

par deux points donnés de la sphère, puis celle du grand cercle
tangent à une courbe donnée en un point donné.

Si le point M doit appartenir à la surface tétraédrique que nous
étudions, il faudra qu'on ait:

sin a sin ß sin y —

En discutant les signes, on verra que l'équation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la courbure

totale, en un point ordinaire d'une surface, est l'inverse
du produit des rayons de courbure principaux (19). Elle est
susceptible de l'expression suivante:
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44. — Appliquons cette formule à la surface :

xyz 3

Les dérivées partielles ont été données plus haut (22). On a,
après un calcul facile:

^ 3p6xéyAzi 3~ ?q T*=' ++ «vp=j i, + i + JJ
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Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points
elliptiques.

45. — De la formule (1), on déduit que c'est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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la surface a la même courbure totale. D'après la formule (1), on

doit avoir :

1 1 l _ i
P + 7+?-7' '

Cette équation représente des surfaces algébriques du sixième

ordre, à huit nappes, admettant les plans

x — + c ; y — zh c ; s + c ;

comme plans asymptotes. L'origine est un point quadruple
isolé. Toute section faite dans l'une de ces surfaces par un plan
parallèle à un plan coordonné, est une krenzcurve.

On obtient un résultat d'apparence plus simple en considérant

l'équation (2). Une ligne de courbure totale constante est

représentée par les équations:

y2z2 -f- z2x2 + x2y2 — a4 xyz — p3

On pourrait faire ici la même remarque qu'au n° 41.

47. — Au n° 31, nous avons trouvé la longueur de la
perpendiculaire abaissée de l'origine sur le plan, tangent à la surface,
au point (#, y, z) :

3"3

Vj2-2 + + #2y2

Il en résulte:

d*=
| j2/ + s2/2 + oc*y* I*

'

En comparant cette formule à la formule (2) du n° 44, on
trouve:

27//

Théorème: Si, en chaque point d'une ligne de courbure
totale constante, on mène le plan tangent à la surface, tous ces
plans enveloppent une sphère, dont le centre se trouve à l'origine.

Cette propriété est encore compatible avec la symétrie de la
surface (41).

(A suivre).
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