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28 . M. WINANTS

par deux points donnés de la spheére, puis celle du grand cercle
tangent a une courbe donnée en un point donns.

Si le point M doit appartenir a la surface tétraédrique que nous
etudions, il faudra qu’on ait:

3
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En discutant les signes, on verra que Péquation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la cour-
bure totale, en un point ordinaire d’une surface, est 'inverse
du produit des rayons de courbure principaux (19). Elle est sus-
ceptible de I’expression suivante:
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44. — Appliquons cette formule & la surface:

xyz =— p3 .

Les dérivées partielles ont été données plus haut (22). On a,

~apres un calcul facile:
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Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points ellip-
tiques. |

45. — De la formule (1), on déduit que ¢’est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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la surface a la méme courbure totale. D’apres la formule (1), on
doit avoir:

Cette équation représente des surfaces algébriques du sixiéme
ordre, & huit nappes, admettant les plans

wre—= = g ? y==c¢; z=-+c;

comme plans asymptotes. L’origine est un point quadruple
isolé. Toute section faite dans I'une de ces surfaces par un plan
paralleéle & un plan coordonné, est une krenzcurve.

On obtient un résultat d’apparence plus simple en considé-
rant ’équation (2). Une ligne de courbure totale constante est
représentée par les équations:

1222 4 22?4 afy? = a* , xrz = p? .

On pourrait faire ici la méme remarque qu’au n° 41.

47. — Au n° 31, nous avons trouvé la longueur de la perpen-
diculaire abaissée de l'origine sur le plan, tangent a la surface,
au point (z, y, 2):

d = 5P
- »\/3,2:2 + zzxz + 1'2]”2
Il en résulte:
d4 _ 81p12
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En comparant cette formule & la formule (2) du n® 44, on

trouve:
d4
h—=— .
27p"

TutoriME: Si, en chaque point d’une ligne de courbure
totale constante, on mene le plan tangent & la surface, tous ces
plans enveloppent une sphére, dont le centre se trouve & 1’ori-
gine.

Cette propriété est encore compatible avec la symétrie de la
surface (41).

(A suivre).
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