Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 22 (1921-1922)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Rubrik: CHRONIQUE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHRONIQUE

Congrès de l'Association française pour l'Avancement des Sciences 1.

Montpellier, 24 au 29 juillet 1922.

Les Sections de mathématiques, astronomie, géodésie, mécanique, se sont réunies sous la présidence de M. Clapier, Dr es Sciences, Professeur au Lycée de Montpellier. Vice-Présidents: MM. le Lt-Col. Perrier, chef de la Section de géodésie au Service géographique de l'Armée, et M. Boccardi, Directeur de l'Observatoire de Turin; Secrétaire, M. A. Gérardin, Correspondant du Ministère de l'Instruction Publique, à Nancy.

Après un discours d'ouverture de M. Clapier, on passe à la présentation des mémoires.

- 1. M. le Lt-Col. Perrier parle de la Réfection de la triangulation des Régions Libérées. De nombreux points géodésiques, dont plus de mille clochers, ont été détruits. Une nouvelle triangulation fera le canevas indispensable aux levés à grande échelle, 10.000°, 20.000°, plans directeurs. Elle intéresse le Ministère de la Guerre et celui des Régions Libérées, car environ 2000 communes réclament la réfection de leurs plans cadastraux. En 1922, on a fait les premières opérations de reconnaissance pour le réseau de premier ordre.
- 2. M. Boccardi présente son mémoire sur L'erreur probable dans les calculs par nombres et par logarithmes. Presque tous les auteurs ont envisagé l'erreur maxima à craindre, mais elle est exceptionnelle. M. Boccardi a étudié l'erreur probable à craindre dans un calcul tiré de tables avec le même nombre de décimales sans interpolation. Il trouve qu'en général c'est le calcul par logs qui donne le plus d'exactitude, tandis que pour une puissance, c'est le calcul númérique qui est le plus précis.
- 3. M. Hadamard envoie une note (présentée par M. Varopoulos) Sur la fonction harmonique la plus voisine d'une fonction donnée.

¹ Nous devons ces notes à MM. GÉRARDIN, CLAPIER et VAROPOULOS.

M. Levi Civita a déterminé la fonction harmonique u qui donne à l'intégrale

 $I = \int \int \int (u - U)^2 dx dy dz$

valeur la plus petite possible, U étant une fonction donnée et le volume d'intégration Ω étant également donné.

Par une méthode plus directe, mais au fond équivalente à celle de

M. L. CIVITA, on peut résoudre ce problème.

Il suffit de chercher les conditions auxquelles doit satisfaire une fonction régulière F pour que l'intégrale

$$J = \iiint F V dx dy dz$$

soit nulle quelle que soit la fonction harmonique V.

4. — M. Hadamard (présentée par M. Varopoulos) La notion de différentielle dans l'enseignement.

On sait que, si

$$y = f(x) , dy = f'(x) dx (1)$$

$$z = f(x, y) , \quad dz = pdx + qdy \tag{1'}$$

l'égalité (1) signifie tout simplement, que, x étant fonction d'une variable auxiliaire quelconque u, on aura

$$\frac{dy}{du} = f'(x)\frac{dx}{du} \tag{2}$$

la relation entre x et u étant quelconque. De même pour l'égalité (1') on aura

$$\frac{dz}{du} = \frac{dz}{dx}\frac{dx}{du} + \frac{dz}{dy}\frac{dy}{du} . {(2')}$$

Ces égalités ont lieu quelle que soit la variable indépendante u l'égalité

$$d^2y = f'(x) d^2x + f''(x) dx^2$$

signifie que l'on a

$$\frac{d^2 y}{du^2} = f'(x) \frac{d^2 x}{du^2} + f''(x) \left(\frac{dx}{du}\right)^2.$$

Et aussi

$$d^2z = pd^2x + qd^2y + rdx^2 + tdy^2 + 2sdxdy$$

veut dire uniquement que l'on a

$$\frac{d^2z}{du^2} = p \frac{d^2x}{du^2} + q \frac{d^2y}{du^2} + r \left(\frac{dx}{du}\right)^2 + t \left(\frac{dy}{du}\right)^2 + 2s \frac{dx}{du} \frac{dy}{du}.$$

5. — M.Varopoulos expose sa note Sur les fonctions croissantes et les fonctions entières.

L'auteur communique quelques résultats obtenus et donne des applications. Il établit d'abord le théorème suivant:

Etant donné un nombre $\theta > 1$ quelconque pour des valeurs de r indéfiniment croissantes l'inégalité

$$\mu\left(r + \frac{1}{\log\mu(r)\log_2\mu(r) \ldots \log_v\mu(r)^a}\right) < \theta \cdot \mu(r) \quad (a > 1 \text{ quelconque})$$

 $\mu(r)$ étant une fonction croissante quelconque, a lieu. Il applique cette proposition aux fonctions entières

$$\mu(z) = a_0 + a_1 z + ... + a_n z^n + ...$$

désignant par m(r) le module maximum sur le cercle |z|=r il démontre les inégalités suivantes:

$$m(r) < r\mu(r) \log \mu(r) \dots \log_{\nu} \mu(r)^a \quad (a > 1 \text{ quelconque})$$
 (1)

où

$$\left| a_n \right| r^n < \mu(r) .$$

$$m(r) < r \mu(r) q(r) \log q(r) ... \log_{\nu} q(r)^a$$
(2)

où q(r) croît plus vite que toute puissance de r finie

$$n < r^2 \mu(r) q(r) \log q(r)^{2+\varepsilon}$$
 $\varepsilon > 0$ (3)

n étant le nombre de zéros de la fonction f(z) $\left[|f(z)| \leq e^{\mu(r)} \right]$ dont le module est plus petit ou égal à r et $\lim \frac{q(r)}{\log r} = \infty$.

- 6. M. Farid Boulad bey, Ingénieur des chemins de fer de l'Etat, au Caire, présente son mémoire Sur la représentation et la détermination des tensions et des déformations autour d'un point dans un corps élastique.
- 7. M. Candido, proviseur au Lycée de Campobasso (Italie), Sur les identités rationnelles. L'auteur généralise des identités de Fagnani et pose une demande de priorité en faveur de Fagnani pour le théorème « dit de Stewart ». Cette question sera étudiée au prochain congrès.
- 8. M. Huttinger, Sur la décomposition en facteurs des équations algébriques. L'auteur annonce qu'il a trouvé une nouvelle théorie, et qu'il la fera connaître plus tard. En attendant, il donne plusieurs exemples.

- 9. M. RICHARD, Professeur au Lycée de Châteauroux, Sur la géométrie dans ses rapports avec la théorie de la Relativité. L'auteur présente plusieurs critiques sur la théorie d'Einstein.
- 10. M. RICHARD, Réflexions diverses sur l'Enseignement des mathématiques. L'enseignement, dans les lycées, devrait être surtout géométrique. L'auteur fait ensuite des observations sur la manière d'enseigner différentes branches des mathématiques élémentaires.
 - 11. Vœu sur la Réfection du Cadastre.
- 12. M. CLAPIER présente une Note d'Arithmétique. En partant de l'équation de Pell-Fermat x^2 $Ay^2 = 1$, l'auteur montre comment on peut déduire d'une solution particulière une infinité d'autres solutions, et donne une suite convergente de fractions qui permet de définir \sqrt{A} .
- 13. M. A. GÉRARDIN présente ses Notes sur l'extension de certaines tables mathématiques importantes. Ces tables forment une suite aux Quadratic Partitions de M. le L^t-Col. Allan Cunningham, de Londres. En général, on peut dire qu'elles mettront encore autant de matériaux nouveaux à la disposition des mathématiciens. Plusieurs exemples sont indiqués, ainsi que des identités inédites mettant certains nombres premiers p sous diverses formes.
- 14. M. A. GÉRARDIN, Sur certaines équations indéterminées en nombres entiers. Solution immédiate de questions posées par des membres de la Section.
- 15. M. A. GÉRARDIN, Lettres inédites de H. Le Lasseur à Ed. Lucas. Ces lettres seront reproduites en 1923, in extenso, dans le Sphinx-Oedipe.
- 16. M. A. Gérardin, Notes sur The Oxford, Cambridge and Dublin Messenger of mathematics.
- 17. M. Cadenat (présenté par M. A. Gérardin) Le calendrier universel à semaine invariable.

L'auteur résout le problème d'amener le même jour de la semaine au même quantième, pendant la suite indéfinie des temps, avec la condition expresse que la semaine ne sera altérée ni dans sa durée, ni dans son cours. L'auteur donne une belle citation de Laplace sur l'utilité de la conservation de la semaine. Il propose la création de deux sortes d'années:

1º Année ordinaire de 52 semaines ou 364 jours.

2º Année complémentaire de 53 semaines ou 371 jours.

Les années complémentaires s'intercaleraient dans le cours des années ordinaires, suivant une formule longuement expliquée. Le 1^{er} janvier de l'année civile oscillerait autour du périgée de 4 jours en plus ou en moins.

- 18. M. Boulogne, Construction de Tables de caractéristiques relatives à la base 300, pour la détermination des nombres premiers et des facteurs premiers des autres nombres non divisibles par 2, 3 ou 5.
- 19. M. Véronnet, astronome à l'Observatoire de Strasbourg, envoie une note, présentée par M. A. Gérardin sur Les étoiles géantes: Constitution et Evolution. Les étoiles géantes constituent un groupe nettement séparé, au moins dans les étoiles rouges et jaunes, les moins chaudes. Elles ont un éclat global de 50 à 100 fois plus considérable que les étoiles normales du même type et de même température, sans étoiles intermédiaires et leurs diamètres peuvent être des centaines de fois plus considérables.

Les lois des gaz ne permettent pas de leur donner la même constitution physique que les autres étoiles. Il faut admettre une enveloppe de particules solides, analogue à la couronne solaire, et maintenue au delà de l'atmosphère par la pression de radiation, à des centaines de fois le rayon de l'astre central. La note étudie les conditions physiques d'équilibre et de température du système. Par le rayonnement, la température de l'astre central diminue, mais celle de l'enveloppe augmente en se rapprochant du centre, et atteindra son maximum quand l'étoile sera redevenue normale.

- 20. M. Fontaine, ingénieur, envoie une brochure intitulée: Les erreurs de l'analyse moderne: Note sur un théorème de Cantor et sur sa démonstration.
- 21. M. BIOCHE, Professeur au Lycée Louis le Grand, Remarques sur les faisceaux des surfaces qui contiennent des systèmes de plans. On considère le faisceau des surfaces définies par l'équation

$$P_1 P_2 \dots P_n + \lambda \cdot Q_1 Q_2 \dots Q_n = 0$$

où l'on a évidemment deux systèmes de plans à deux valeurs opposées de λ correspondent des surfaces telles que les plans tangents soient conjugués harmoniques par rapport aux plans P, et Q.

On peut établir facilement des résultats intéressants pour ces

surfaces.

M. A. Gérardin présente les notes suivantes:

22. — Léon Aubry, de louy les Reims, Démonstration du théorème de Fermat sur les nombres polygones.

En se basant sur la décomposition de tout nombre en une somme de trois triangulaires et sur l'identité

$$\begin{cases} K\left(\frac{x^{2}-x}{2}\right)+2x+1+K\left(\frac{y^{2}-y}{2}+\frac{u^{2}-u}{2}+\frac{v^{2}-v}{2}\right) \\ =\left[K\left(\frac{X^{2}-X}{2}\right)+X\right]+\left[K\left(\frac{Y^{2}-Y}{2}\right)+Y\right]+\left[K\left(\frac{U^{2}-U}{2}\right)+U\right] \\ +\left[K\left(\frac{V^{2}-V}{2}\right)+V\right] \\ X=\frac{1}{2}(x+y+u+v-1), \quad Y=\frac{1}{2}(x+y-u-v+1) \\ U=\frac{1}{2}(x-y+u-v+1), \quad V=\frac{1}{2}(x-y-u+v+1) \end{cases}$$

on démontre beaucoup plus facilement que par la méthode de Cauchy, que tout nombre est décomposable en une somme de K + 2 nombres de la forme K $\left(\frac{m^2-m}{2}\right)+m$.

23. — M. R. Goormaghtigh, Ingénieur à La Louvière (Belgique): Un théorème sur les puissances entières. Cette note contient la démonstration du théorème suivant: Toute puissance d'exposant 4n d'un multiple de 3 est la somme algébrique d'un bicarré et de deux cubes.

Cette proposition suppose n au moins égal à 3. La démonstration montre cependant qu'elle est aussi applicable au cas de n = 2, en ce qui concerne les multiples impairs ou pairement pairs de 3.

24. — M. R. Goormaghtigh, Sur des propriétés remarquables de certaines chaînettes tordues. Cette communication est destinée à faire connaître des résultats obtenus dans l'étude de la courbe gauche remarquable obtenue en tordant la chaînette d'équation intrinsèque $\rho = a + \frac{s^2}{a}$ de manière que son rayon de torsion soit défini par la relation $\tau = \frac{a\rho}{s}$, c'est-à-dire de manière qu'elle devienne une certaine géodésique de cône. Ces résultats peuvent se résumer ainsi:

Le cône sur lequel la chaînette tordue considérée est une géodésique peut s'obtenir en projetant du centre d'une sphère la développée sphérique d'une courbe sphérique à torsion constante tracée sur cette sphère, et dont le rayon de torsion est égal au rayon de la sphère.

La transformée par inversion de la chaînette tordue, par rapport au sommet du cône, est une courbe à courbure constante.

Les normales principales de la chaînette tordue sont les binormales

d'une autre courbe qui s'obtient en tordant la développée d'une chaînette d'égale résistance de manière qu'elle devienne aussi une géodésique de cône.

Pour la chaînette tordue considérée, le rayon de la sphère osculatrice varie proportionnellement au rayon de courbure.

- 25. M. Kraitchik, Ingénieur à Bruxelles. Tables d'indices jusqu'à 10.000. Une table d'indices est dans la théorie des nombres ce qu'est une table de logs en algèbre. On comprend donc l'utilité de cette table; celle de Jacobi ne va que jusqu'à 100. L'auteur donne les indices de tous les nombres premiers inférieurs à 100 pour tous les modules inférieurs à 10.000, avec des applications. On en trouve d'autres dans la «Théorie des Nombres» et dans les «Décompositions de $a^n \pm b^n$ en facteurs dans le cas où nab est un carré parfait » publiés récemment par l'auteur (Gauthier Villars).
- 26. M. P. Humbert, Sur une propriété des fonctions hypercylindriques.
- 27. M. T. Lemoyne, à Paris, Sur les normales aux courbes algébriques planes. En cherchant l'ordre du lieu des pieds des normales menées d'un point donné P aux courbes algébriques appartenant à un système de caractéristique (μ, ν) on conclut les théorèmes suivants:

I. Dans un système de courbes (μ, ν) d'ordre m il y a $(\mu + \nu)$ courbes

normales à une droite quelconque D.

- II. Le lieu des pieds des normales menées d'un point P aux courbes (μ, ν) est une courbe d'ordre $2\mu + \nu$ qui admet le point P et les points cycliques pour points multiples d'ordre μ .
- 28. M. T. Lemoyne, Sur les cubiques à point double. En partant du théorème bien connu de Chasles «Lorsque deux angles sont circonscrits à une conique, les sommets et les 4 points de contact sont 6 points d'une même conique » nous établissons un autre théorème. C'est le théorème suivant:

Théorème: Si de deux points quelconques A, B d'une cubique à point double on mène les tangentes à la courbe les deux points A, B et les 4 points de contact sont 6 points d'une même conique.

29. — M. Hostinsky à Brno (Tchéco-Slovaquie), Analyse vectorielle et équations intégrales. On sait que la recherche des fonctions inconnues d'un système d'équations intégrales de Fredholm se réduit à la résolution d'une équation intégrale unique.

On peut ou bien appliquer la méthode même de M. Fredholm (Acta mathematica, 1903), ou bien on peut employer un procédé dont

s'est servi M. Weyl.

L'auteur compare ces deux méthodes et envisage un cas très inté-

ressant qui se présente dans les problèmes de la physique mathématique: Chercher trois composantes u, v, w d'un vecteur A dont le point d'application P est situé sur une surface fermée S.

- 30. M. Dontot, Sur une formule d'Euler.
- 31. M. Clapier présente sa Note Sur les équations irrationnelles de la forme

$$\sqrt{x} + \sqrt{y} + \sqrt{z} + \dots = 0.$$

L'auteur donne une méthode simple pour les rendre rationnelles. Il interprète géométriquement ces formes et généralise pour le cas de 5 variables, les propriétés de la surface de Steiner.

32. — M. Riabouchinsky, envoie une Note Sur les mouvements plans des fluides autour de solides avec tourbillons. L'auteur obtient pour chaque configuration des solides et des tourbillons des constantes cycliques bien déterminées.

Après l'élection de M. le L^t-Col. Perrier, comme président de la Section pour 1923, M. Clapier prononce un discours de clôture. La Section remercie vivement M. Clapier qui a su intéresser aussi de nouveaux collègues et les amener à notre groupement.

Questions à l'ordre du jour pour le Congrès A. F. A. S. 1923 (Bordeaux):

1º Réforme du calendrier. — 2º Rapports entre la géologie et l'astronomie. — 3º L'accélération du moyen mouvement de la Lune. — 4º Equations irrationnelles de la forme

$$\sqrt[n]{x} + \sqrt[n]{y} + \sqrt[n]{z} + \dots = 0$$
.

5º Bio-Bibliographie d'un savant de la Région de Bordeaux. — 6º Dé termination des efforts secondaires dans les poutres américaines à grande portée.

Société mathématique suisse.

Berne, 26 août 1922.

La Société mathématique suisse a tenu sa douzième réunion ordinaire à Berne, le 26 août 1922, sous la présidence de M. le Prof. Gustave Dumas (Lausanne). La partie scientifique comprenait douze communications dont voici les résumés:

1. — Prof. Marcel Grossmann (Zurich). — Géométrie dans le système des antipolaires. — Si on ordonne à chaque point d'un plan son « antipolaire » par rapport à un cercle donné, il en résulte un système polaire par rapport à un cercle imaginaire. Si on prend celui-ci comme conique absolue d'une métrique projective, on aura une représentation de la géométrie elliptique (non-euclidienne). Chaque triangle polaire sera par exemple un triangle avec trois angles droits. A chaque figure et à chaque construction de la géométrie elliptique correspondra une figure et une construction dans le système polaire.

Comme exemple on donne la construction d'un cercle dont on connaît le centre et un point de la circonférence. Il est facile de trouver parmi les cercles concentriques autour du centre donné une courbe qui est à la fois cercle de la géométrie euclidienne. Tous les autres cercles de la géométrie sont collinéaires à cette courbe.

- 2. Prof. A. Speiser (Zurich). Groupes de congruences. D'après le théorème de C. Jordan il n'y a qu'un nombre limité de groupes simples représentables par des substitutions de degré n avec des coefficients réels ou complexes. Si au contraire on prend pour coefficients les résidus d'un nombre premier p ou d'un idéal premier (un domaine d'imaginaires de Galois), on a une infinité de tels groupes. Cependant on peut démontrer par la théorie du déterminant des groupes, que si l'ordre d'un groupe de congruences est premier à p, ce groupe est représentable comme groupe de substitutions du même degré avec des coefficients réels ou complexes. La complexité immense des groupes de congruences dépend donc uniquement du facteur p de l'ordre.
- 3. Prof. R. Fueter (Zurich). La théorie indépendante des fonctions modulaires elliptiques. Hurwitz, dans sa thèse de doctorat, a le premier défini et développé les fonctions modulaires elliptiques sans revenir à la théorie des fonctions elliptiques. Plus tard (Math. Annalen, t. 48), il a simplifié ses démonstrations, sans parvenir cependant à un résultat tout à fait satisfaisant. C'est à l'aide du théorème de Fourier

$$\sum_{n=-\infty}^{+\infty} \int_{0}^{1} f(\xi) e^{2\pi i n \xi} d\xi = \frac{f(0) + f(1)}{2}$$

qu'on arrive au bout sans difficulté. Cette théorie sera exposée dans un ouvrage didactique en préparation.

4. — Prof. A. Emch (Urbana, E.-U.). — Sur quelques applications géométriques des groupes de substitutions symétriques. — Cette communication envoyée par notre savant concitoyen soleurois se

rattache au mémoire fondamental de Veronese sur l'interprétation géométrique de la théorie des substitutions de n lettres. Elle sera insérée dans un prochain no de l'Enseignement mathématique.

5. — Dr Charles Willigens (Interlaken). — Application du calcul des probabilités à l'adaptation des salaires au coût de la vie. — On appelle nombre indice un nombre qui est sensé indiquer la dépense nécessaire à une famille type. On obtient ces nombres indices à l'aide de comptes de ménages, en prenant la moyenne des quantités consommées pour la nourriture, les vêtements, etc. Ce procédé, ainsi que celui employé pour déterminer la composition de la famille correspondant à la moyenne est très rudimentaire et sujet à caution. Dans ce qui suit nous admettrons que l'on dispose d'un nombre indice acceptable, représentant la moyenne des dépenses des ménages de la Suisse. Connaissant les besoins et les prix du jour, on pourra à tout moment calculer la valeur de cette moyenne.

Supposons que nous connaissions le revenu x de chaque ménage. Soit $M_x\Delta_x$ le nombre de ménage dont le revenu est compris entre x et $x+\Delta x$, M le nombre total des ménages. Sur les longueurs Δx égales portées sur l'axe des x, construisons des rectangles de hauteur $\frac{M_x}{M}$. L'aire du rectangle représente la fréquence des ménages de revenu compris entre x et $x+\Delta x$. A l'aide d'un procédé d'interpolation, on peut déterminer, connaissant un certain nombre des ménages seulement, une fonction V(x), tel que V(x)dx représente la probabilité pour un ménage ayant un revenu compris entre x et x+dx. Le procédé consiste à prendre un nombre suffisant de termes du développement en série uniformément convergente, suivant les polynomes qui s'introduisent dans les dérivées successives de 1

$$J = \frac{h}{\sqrt{\pi}} e^{-h^2 \alpha^2} \cdot$$

Dans ce qui suit nous nous contenterons de la 1^{re} approximation, les données faisant défaut pour pousser plus loin. L'indice J est donné comme moyenne des valeurs de x par l'intégrale

$$J = \frac{h}{\sqrt{\pi}} \int_{-\infty}^{+\infty} xe^{-h^2(x-J)^2} dx .$$

¹ Voir pour la méthode: E. CZUBER. Wahrscheinlichkeitsrechnung, 3° édition, t. I, p. 418. — Voir aussi l'exposé de A. GULDBERG dans les Comptes rendus du Congrès international des mathématiciens, Strasbourg, 1920, p. 552.

En effet V(x) $dx \times M$ étant le nombre des familles de revenu entre x et x+dx, leur dépense supposée égale à leur revenu sera x. M+V(x)dx. Pour tous les ménages la dépense sera

et la moyenne de ces dépenses sera

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x V(x) dx$$

ici nous prenons

$$V(x) = \frac{h}{\sqrt{\pi}} e^{-h^2(x-J)^2}$$
.

Si par suite d'une variation de prix l'indice prend une valeur J' et si nous désignons par $\varphi(x)$ le nouveau revenu, déterminé en fonction de l'ancien, on aura

$$J' = \frac{h}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \varphi(x) e^{-h^2(x-J)^2} dx , \qquad (1)$$

c'est-à-dire que J' devra de nouveau être la moyenne des revenus. La constante h est donné par la formule:

$$1: h\sqrt{2} = \sqrt{\frac{\sum (x - \mathbf{J})^2}{n}} , \qquad (2)$$

la somme étant formée pour les valeurs de x pour les ménages connus, au nombre de n.

(1) donne une relation permettant de déterminer des constantes laissées arbitraires dans $\varphi(x)$.

Nous imposerons en outre la condition:

$$J' = \varphi(J) \tag{3}$$

pour que le maximum de l'exponentielle corresponde de nouveau au nombre indice.

I. Si l'on pose $\varphi(x) = \lambda x$ les conditions (1) et (3) sont identiques et on a

$$\varphi(x) = \frac{J'}{J}x.$$

II. Si l'on a $\varphi(x) = ax + b$ les conditions (1) et (3) donnent J' = aJ + b Si l'on veut assurer un revenu minimum i' correspondant à un ancien

revenu minimum i on aura i'=ai+b, soit en définitive le nouveau salaire

$$\varphi(x) = \frac{J' - i'}{J - i}(x - J) + J'.$$

III. Si $\varphi(x)$ est quelconque on aura

$$\varphi(x) = \varphi(J + x - J) = \varphi(J) + \frac{x - J}{1} \varphi'(x) + \frac{(x - J)^2}{2!} \varphi''(J) + \dots$$

que nous supposerons convergente pour toute valeur de x. On a $\varphi(J) = J'$ et (1) donnera une relation entre les valeurs des dérivées de $\varphi(x)$ pour x = J.

On pourrait encore faire l'adaptation en assurant un salaire minimum et en remarquant que la variation du prix de la vie est d'autant moins éprouvé que le revenu est élevé. Si l'on adopte l'hypothèse de Daniel Bernoulli sur la valeur morale d'une somme, on obtient la formule

$$\varphi(x) = x + \frac{i' - i}{\log \frac{i'}{i}} \log \left(1 + \frac{i' - i}{x}\right),$$

pour x = i, on a bien $\varphi(x) = i'$; à l'ancien salaire minimum, correspond le nouveau minimum.

6. — Dr Jules Chuard (Lausanne). — Le problème des quatre couleurs. — Le problème de la coloration de la carte sur la sphère est bien connu: Quatre couleurs ont toujours suffi à colorier les subdivisions d'une carte terrestre, à condition de ne pas donner la même couleur à deux d'entre elles qui ont en commun une ou plusieurs lignes de séparation ¹. La condition de suffisance n'a cependant pas été établie jusqu'ici.

Des résultats antérieurement acquis ont montré que toute la difficulté consistait à colorier une carte dont les frontières forment un réseau cubique. Or de tels réseaux sont réductibles, de diverses manières, en un réseau quadratique et un réseau linéaire.

J'ai tiré d'un procédé dû à M. Veblen 2, un moyen d'obtenir tous ces réseaux quadratiques, partant toutes les réductions d'un réseau cubique donné. En correspondance avec ce réseau on établit une certaine matrice, dont chaque ligne concourt à la formation d'une équation linéaire et homogène. Leur ensemble compose le système (1) dont les solutions jouissent des propriétés suivantes:

¹ A. Errera. Du coloriage des cartes... Paris, Gauthier-Villars; Bruxelles, Falk fils, 1921.

² O. VEBLEN. An application of modular equations in Analysis Situs. (Annals of Mathematics, Princeton, 1912, p. 86.)

Il existe α_2 — 1 solutions linéairement indépendantes, α_2 étant le nombre des pays.

Le nombre total de solutions est 2^{α_2-1} .

A tout contour fermé constitué par des arêtes du réseau, correspond une solution du système (1). A toute solution du système (1) correspond un contour fermé ou un ensemble de contours fermés.

Les réseaux quadratiques correspondent aux solutions qui ren-

ferment α_0 valeurs différentes de zéro.

Le nombre des réductions du réseau cubique considéré est ainsi égal à celui des solutions du système (1) qui ont α_0 valeurs différentes de zéro. Le nombre total des solutions du système (1) étant fini, on a la possibilité d'obtenir toutes ces réductions.

En vue de la coloration de la carte à l'aide de quatre couleurs, on peut classer les réseaux quadratiques obtenus plus haut en trois types suivant qu'ils comprennent:

a) Un contour fermé unique. — b) Deux ou plusieurs contours fermés, chacun d'eux renfermant un nombre pair d'arêtes. — c) Deux ou plusieurs contours fermés parmi lesquels il en est qui renferment un nombre impair d'arêtes.

L'on a enfin les propositions:

L'existence d'un seul réseau des types a ou b suffit à assurer la coloration de la carte avec quatre couleurs.

Dans tout réseau cubique tracé sur une sphère il existe un réseau quadratique du type a.

7. — Prof. Rolin Wavre (Genève). — Un problème d'itération. — I. Soient $\psi_p(z_1, \dots z_n)$, n fonctions entières ou rationnelles des n variables complexes $z_p = x_p + iy_p$ (p = 1, ..., n). Les relations

$$z_p^{(1)} = \psi_p \left(z_1, ..., z_n \right)$$

définissent une substitution, que nous désignerons par Ψ , du point $P^{(1)}(z_1^{(1)}, ..., z_n^{(1)})$ au point $P(z_1, ..., z_n)$ de l'espace E à 2n dimensions $(x_1, ..., x_n; y_1, ..., y_n)$.

Soient $\Psi^{(2)}$, $\Psi^{(3)}$, ... les itérées de la substitution Ψ . Choisissons un domaine D_0 de E constitué par l'intérieur de n courbes analytiques fermées simples C_1 , ... C_n situées dans les plans des variables z_1 , ... z_n respectivement, tels que Ψ soit continue 1 à l'intérieur de D_0 et sur sa frontière. Appelons D_1 le premier itéré du domaine D_0 et supposons

¹ Point de continuité — point régulier,

[»] infini — » singulier non essentiel de première espèce,

[»] d'indétermination — » » » de seconde espèce.

que D_1 appartienne ainsi que sa frontière F_1 au domaine D_0 , ce que nous désignerons par l'inégalité

$$D_0 > D_1 + F_1 . (1)$$

Formons également l'itéré D_m de D_0 par la substitution $\Psi^{(m)}$ et cela pour toutes les valeurs de m. Les substitutions $\Psi^{(m)}$ sont continues dans D_0 .

On a évidemment

$$D_0 > D_1 > D_2 > \dots$$

a) Lorsque m augmente indéfiniment, D_m tend à se réduire à un point α de E, seul point double de la substitution intérieur à D_0 . Le point α sera dit point double attractif de la substitution.

Nous pouvons toujours prendre le point α comme origine de l'espace E. Soit alors $a_p^{(1)}z_1 + \ldots + a_p^{(n)}z_n$ la partie linéaire du développement de Ψ_p au voisinage de l'origine α . Supposons le déterminant des $a_p^{(q)}$ différent de zéro.

b) Les n racines s_1 , s_2 , ... s_n de l'équation

$$\Delta(s) = \begin{vmatrix} a_1^{(1)} - s & a_2^{(1)} & . & a_n^{(1)} \\ a_1^{(2)} & a_2^{(2)} - s & . & a_n^{(2)} \\ . & . & . & . \\ a_1^{(n)} & a_2^{(n)} & . & a_n^{(n)} - s \end{vmatrix} = 0$$

sont toutes en module inférieures à l'unité.

Inversément, si cette condition est vérifiée on peut trouver un domaine D_0 tel que $D_0 > D_1 + F_1$.

Formons l'ensemble D_{-m} des points P_{-m} où la substitution $\Psi^{(m)}$ est continue et dont l'itéré $P_0 = \Psi^{(m)} (P_{-m})$ appartient à D_0 et cela pour toutes les valeurs de m. Soit F_{-m} la frontière de D_{-m} .

Si la relation (1) est vérifiée on a $D_0 < D_{-1} < D_{-2} < ...$ Soit D l'ensemble de tous les points qui appartiennent à l'un des D_{-m} et F sa frontière. La substitution Ψ peut admettre des points d'indétermination dans le domaine D. Nous dirons tout de même que D est un domaine complètement invariant par la substitution et son inverse.

c) Tout point p de F est point limite d'une suite $p_1, p_2, ...$ de points distincts appartenant respectivement aux frontières $F_{-1}, F_{-2}, ...$; la substitution $\Psi^{(m)}$ étant continue en p_m . C'est la présence des points d'indétermination des substitutions $\Psi^{(m)}$ qui exige un peu de réflexion pour établir cette proposition. Cette indétermination ne se présente pas dans le cas d'une seule variable.

Soit D_{α} l'ensemble des points de D qui peuvent être reliés à α par un arc de Jordan dont tous les points appartiennent à D. Soit F_{α} sa frontière. F_{α} appartient à F. D_{β} sera appellé domaine immédiat du point α . F et F_{α} sont deux ensembles parfaits.

II. Considérons l'équation fonctionnelle de Schröder

$$s \varphi[P] = \varphi[\Psi(P)]$$
.

Il résulte des recherches de M. Leau, que cette équation est résoluble par des fonctions φ_p holomorphes au voisinage du point α pour les racines s_p respectivement, que nous supposerons ici toutes distinctes, et telles que la racine carrée du plus petit de leur module soit supérieure au plus grand.

Par une substitution linéaire, Poincaré a montré que l'on peut ramener la substitution Ψ à la forme canonique

$$z_p^{()} = s_p z_p + f_p(z_1, ..., z_n) \quad (p = 1, ..., n) ,$$
 (2)

les f_p , évidemment entières ou rationnelles, étant nulles ainsi que leurs dérivées premières à l'origine.

Désignons par $z_p^{(1)}$, $z_p^{(2)}$, ... les itérés successifs du point z_p .

Les expressions

$$\frac{z_p^{(n)}}{s_p^n} \qquad (p = 1, \dots, n)$$

tendent respectivement vers les n fonctions $\varphi_p(z_1, ..., z_n)$ lorsque n augmente indéfiniment.

Donnons un développement de φ_p valable dans tout le domaine D.

d) Avec la forme canonique (2) les fonctions φ_p peuvent être mises sous la forme suivante :

$$\varphi_p(z_1,\ldots,z_n) = z_p + \sum_{q=0}^{\infty} \frac{f_p(z_1^{(q)},\ldots,z_n^{(q)})}{s_p^{q+1}}, \quad (p = 1,\ldots,n). \quad (2)$$

ce développement étant absolument ϵt uniformément convergent dans tout domaine fermé et borné appartenant à D.

En un point de D, un nombre fini de termes peuvent être infinis ou indéterminés, mais alors leur somme est holomorphe au voisinage de ce point. Les fonctions φ_p sont donc holomorphes dans D.

Pour chaque fonction φ_p , il est possible de définir un domaine d_o , satisfaisant à la condition (1), donnant évidemment naissance au même domaine D et sur la frontière duquel on ait, r étant un nombre positif,

Supposons donc que le domaine D_0 lui-même donne lieu à cette inégalité. On voit aisément que si le point P est un point de continuité de $\Psi^{(m)}$ situé sur F_{-m} , le point $\Psi^{(m)}(P)$ est sur F_0 . L'équation de Schröder donne

$$\varphi(P) = \frac{1}{s^m} \varphi[\Psi^{(m)}(P)]$$

et par suite on a

$$\mid \varphi_{p}\left(\mathbf{P}\right) \mid > \frac{r}{s_{p}^{m}} \qquad \mid s_{p}\mid < 1$$

en tout point de continuité de $\Psi^{(m)}$ situé sur F_{-m} .

e) Ceci montre, en vertu de la proposition c, que chaque point de F est point limite d'une suite de point de D sur lesquels le module des fonctions φ_p croit au dela de toute limite.

L'ensemble F est donc singulier pour les fonctions φ_p . Le domaine D pourrait se composer de plusieurs domaines disjoints et alors le développement (2) définirait une fonction holomorphe dans chacun d'eux, sans qu'il soit possible de passer de l'un à l'autre par prolongement analytique au sens de Weierstrass. Le domaine D_{α} est donc le domaine de Weierstrass au voisinage du point α .

Une démonstration légèrement différente montrerait qu'il en est de même pour toute solution holomorphe au voisinage de l'origine de l'équation de Schröder sans aucune restriction concernant les racines s_{ν} .

Nous obtenons donc le résultat suivant:

Le domaine de Weierstrass des solutions holomorphes au voisinage d'un point double attractif, des solutions de l'équation de Schröder pour une substitution à un nombre quelconque de variables, est le domaine immédiat de ce point.

Dans le cas d'une seule variable, M. Fatou a démontré cette proposition ainsi que d'autres beaucoup plus précises sur la nature des fonctions φ et de l'ensemble F_{α} .

- 8. Prof. F. Gonseth (Berne). Sur la représentation de Laguerre des imaginaires de l'espace. 1. Par la combinaison de la représentation de Laguerre du point imaginaire de l'espace et d'une seconde représentation (que Study nomme dans le plan « das zweite Bildpaar ») on arrive à traiter avec simplicité les problèmes descriptifs de l'espace où entrent des éléments imaginaires. Par exemple la congruence linéaire elliptique s'obtient comme suit: De chaque point M du plan médian de deux droites dirigées on abaisse la perpendiculaire sur ces droites. La normale en M sur le plan de ces deux perpendiculaires décrit la congruence.
- 2. La symétrie de Schwarz-Laguerre par rapport à une courbe plane analytique peut être étendue dans l'espace de la façon sui-

vante: Soit Φ une surface analytique, réelle ou imaginaire et P un point réel. Le cône isotrope de P coupe Φ en une courbe γ , et la développable isotrope circonscrite à γ contient en outre du point P une courbe réelle c. La correspondance de contact $P- \succ c$ peut être à certains points de vue (conservation de certains angles) envisagée comme une extension de la symétrie susmentionnée.

Si en particulier Φ est une sphère imaginaire, c est un cercle, qui

pour une sphère réelle se réduit au conjugué de P.

9. — Dr E. Anliker (Berne). — Sur la génération cinématique des astroïdes. — Examinons le système cinématique dans lequel l'ellipse de demi-axes 2a et a roule sans glisser sur une rosace à quatre branches de paramètre 2a à condition que le petit-axe de l'ellipse passe constamment par le nœud de la rosace.

Nous aurons entre autres les courbes suivantes: Toute droite du plan mobile parallèle au petit-axe de l'ellipse enveloppe une circonférence. Toute autre droite formant un angle w avec le petit-axe engendre une astroïde, dont la position des axes de symétrie et les dimensions dépendent de w. Par exemple: Toute droite par le centre de l'ellipse enveloppe une astroïde régulière; toute droite par un

sommet du petit-axe une demi-croix de Malte, etc.

Tout point du petit-axe ou de son prolongement décrit la podaire de la développante d'astroïde enveloppée par la perpendiculaire en ce point sur le petit axe. Le centre de l'ellipse par exemple engendre une rosace à quatre branches régulières. Les extrémités du petit-axe décrivent des Ovales de Münger, etc. Tout autre point décrit une conchoïde oblique ou une orthoconchoïde de la trajectoire du centre de l'ellipse. En particulier les milieux des demi-axes principaux fournissent des cornoïdes.

10. — Dr Paul Thalmann (Berne). — Sur une nouvelle représentation des fonctions de variables complexes. — La représentation ordinaire d'un point imaginaire a l'inconvénient qu'un point réel d'une courbe est présenté par deux points différents, c'est-à-dire par un point sur l'axe des x et un point sur l'axe des y; de plus ce couple n'est pas indépendant du choix du système des coordonnées. La-Guerre et plus tard Study ont introduit un autre couple de points n'ayant plus ces désavantages. Je veux montrer, qu'on peut encore choisir de manière simple un autre mode de représentation. (Voir Jahrbuch der philosoph. Fakultät II der Universität Bern, Bd. III 1923: Paul Thalmann: Ueber eine neue graphische Darstellung der komplexen Zahlen. Dissertation, p. 34-42).

Soient

$$x^\star = x + i\xi \qquad y^\star = y + i\eta \ .$$

Construisons d'abord A(x, y); puis déplaçons le système des coor-

données jusqu'en A et construisons dans ce nouveau système le point $B(\xi, \eta)$. Nous choisissons A et B comme couple représentatif. B a les coordonnées $u = x + \xi$, $v = y + \eta$ relativement au système primitif. Si nous examinons la transformation $A \rightarrow B$, nous obtenons le résultat suivant: chaque surface couverte en B(u, v) est le double de la surface au point A(x, y). De plus la correspondance $A \rightarrow C$ conserve les aires, avec $C(\xi, \eta)$.

On peut, en particulier, à l'aide de cette représentation donner un sens géométrique simple au problème consistant à chercher les points d'intersection d'une droite d (réelle) et d'une conique — une ellipse

par exemple — lorsque ces points sont imaginaires.

Les deux couples représentatifs ont le même point A: l'intersection de d avec le diamètre conjugué à la direction de d. Les points B et B' sont sur d, de part et d'autre de d. Ils sont les points d'intersection toujours réels de d avec une conique semblable à la donnée, de centre A et d'ailleurs très facile à déterminer.

Si d se meut parallèlement à elle-même, B et B' sont sur une hyperbole, complémentaire de l'ellipse, déjà introduite par Poncelet. Le système de ces hyperboles peut être considéré comme un prolongement analytique de l'ellipse.

Les autres coniques fournissent des résultats analogues.

Il pourrait être intéressant d'étudier, à ce point de vue, quelques courbes d'ordre supérieur.

11. — Dr Willy Scherrer (Zurich). — Un théorème sur les réseaux et sur les volumes. — Il s'agit d'un théorème de la géométrie des nombres, auquel on peut donner l'énoncé suivant: Dans un réseau de côté unité, un domaine D de volume unité contient au moins deux points que joint un vecteur du réseau.

La démonstration est basée sur le lemme suivant: Etant donnés $Z > \mu^n$ points répartis d'une façon arbitraire dans un réseau à n dimensions, où μ est un nombre naturel, il y a au moins deux points réunis par un vecteur du réseau de côté μ .

Considérons les vecteurs ayant leurs origine en un point quelconque du réseau et se terminant aux Z points en question. Parmi ces vecteurs il y en a au moins deux ayant les mêmes restes pour le module μ et notre lemme se trouve démontré.

Divisons maintenant les côtés du réseau unité primitif par le nombre naturel N et construisons le réseau correspondant à ces divisions.

Parmi les points de ce réseau il y en a Z qui tombent dans le domaine D. Le volume de D peut être défini par l'expression:

$$\lim_{N=\infty} \frac{Z}{N^n} = 1 .$$

Appliquons maintenant le lemme précédent aux Z points du nouveau réseau et prenons $\mu = \left[\stackrel{n}{V} \overline{Z} \right]$. Rapportons tout aux unités primitives et faisons le passage à la limite: $N = \infty$, nous obtenons notre théorème.

Ce théorème fournit une base simple pour différents théorèmes de la géométrie des nombres. Il en est ainsi du théorème de Minkowski sur les corps convexes centrés, de même de l'inégalité de Tchebychew-Minkowski concernant les formes quadratiques décomposables. Enfin notre théorème donne sous une forme géométrique certains résultats concernant les systèmes d'équations linéaires de Diophante.

12. — Prof. G. Juvet (Neuchâtel). — Equations aux dérivées fonctionnelles partielles. — Ces recherches font partie d'un travail qui sera publié plus tard.

Société suisse des Professeurs de Mathématiques.

La Société suisse des professeurs de mathématiques a tenu sa réunion annuelle à Zoug, le 8 octobre 1922, sous la présidence de M. le Dr H. Schuepp, professeur à l'Ecole cantonale de Zurich. En ouvrant la séance, le président a rappelé le décès des Professeurs Cailler (Genève), Gubler (Zurich), Meier (St-Gall), et H. Suter (Zurich), puis il a rendu compte des démarches qui ont été faites auprès des autorités à la suite des propositions et vœux émis par la Société en 1921 au sujet des programmes des examens fédéraux de maturité.

Les éléments à l'infini dans l'enseignement de la Géométrie. — M. le Prof. Grossmann (Zurich) a d'abord rappelé l'importance et la portée des éléments à l'infini en géométrie, puis M. le Prof. Mettler (Zurich) s'est placé au point de vue de l'enseignement dans les écoles moyennes. A quel moment et dans quelle mesure ces notions peuventelles être introduites dans l'enseignement géométrique? Il estime que pour le début, il faut rester au point de vue des anciens: deux droites parallèles ne se rencontrent pas. L'introduction des locutions nouvelles, point, droite et plan de l'infini, ne doit se faire que plus tard à l'aide d'exemples bien choisis, au moment où l'on aborde les notions de géométrie moderne.

Plans d'études.— Dans une seconde séance MM. Amberg (Zurich) et Flatt (Bâle) rapportent sur le projet de maturité et les plans d'études mathématiques dans l'enseignement moyen. M. Amberg se place au point de vue du gymnase, tandis que M. Flatt insiste plus particulièrement sur les besoins des écoles réales et des sections scientifiques. Après discussion, l'assemblée décide de confier à une commission spéciale l'élaboration d'un projet de plans d'études pour les branches mathématiques dans les différentes sections de l'enseigne-

ment moyen. Cette commission est composée du Comité (MM. Schuepp, Zurich; Mercier, Genève; Vaterlaus, Zurich; Stohler, Bâle; Flukiger, Berne); des deux rapporteurs, MM. Amberg et Flatt, et de M. Huber, recteur du Gymnase d'Altorf.

Nouvelles diverses. — Nominations et distinctions.

Allemagne. — Le *Prix Ackermann-Teubner* pour 1922 a été accordé à P. M. Koebe, Professeur à l'Université de Iéna, pour ses Mémoires sur l'uniformisation des courbes algébriques parus dans les « Mathematische Annalen » (Tome LXVII, 1909; LXIX, 1910 et LXXII, 1912).

Belgique. — Académie Royale de Belgique; Classe des Sciences. — Le programme du concours annuel pour 1924 comprend les questions suivantes pour les sciences mathématiques et physiques:

1. On demande une contribution importante à la géométrie infini-

tésimale des surfaces courbes.

2. On demande une contribution nouvelle à nos connaissances sur l'absorption de la lumière dans l'espace interstellaire.

Pour chacune de ces questions, le prix peut être de 1500 fr. Délai

1er août 1924.

Italie. — Sous le titre Unione matematica italiana il vient d'être constitué une société groupant les mathématiciens italiens et destinée en même temps à assurer leur contact avec l'Union internationale Mathématique fondée à Strasbourg en 1920. Le Comité provisoire est dirigé par MM. S. PINCHERLE, président et E. BORTOLOTTI, secrétaire. Il publiera un bulletin dont l'administration a été confiée à l'éditeur bien connu N. Zanichelli, à Bologne. Le Bollottino della Unione Matematica Italiana, dont le premier fascicule porte la date d'octobre 1922, comprendra les rubriques suivantes: Sezione prima: Piccole Note. — Sezione seconda: A. Sunto di lavori pubblicati dai periodici italiani. — B. Sunto di lavori pubblicati dai periodici esteri. — C. Corrispondenza matematica. — D. Notizie. — E. Recenzioni di opere.

Universités. — Ont été transférés: M. G. Armellini de Pise (mécanique supérieure) à Rome (astronomie); M. A. Comessati, de Cagliari (géométrie analytique) à Padoue(géométrie descriptive); M. E. Laura, de Pavie (Mécanique rationnelle) à Padoue (même chaire); M. A.

Palatini, de Messine (méc. rat.) à Naples (phys. math.).

Ont été nommés professeurs extraordinaires: M. E. Bompiani, pour la géométrie analytique à l'Institut Technique Supérieur de Milan; M. C. Rosati, pour la géométrie projective et descriptive à l'Université de Pise; M. G. Sannia, pour la géométrie analytique et M. G. Vitali, pour l'Analyse infinitésimale à l'Université de Modène.

Nécrologie.

Albert Kundig. — C'est avec un profond chagrin que nous faisons part à nos lecteurs du décès de M. Albert Kundig, maître-imprimeur, emporté subitement par une embolie le 1^{er} mars 1923 à l'âge de 53 ans. Sa mort prématurée est une perte douloureuse pour l'imprimerie suisse en général.

Fondée en 1832 par Elie Carey, la maison d'imprimerie resta dans cette famille jusqu'en 1892, date à laquelle elle fut reprise par MM. W. et A. Kundig, père et fils. Depuis la mort de son père, survenue en 1908, M. Albert Kundig dirigea seul son imprimerie qui maintenant

va être continuée par ses fils.

Les remarquables publications que la Science doit aux soins de la Maison Kundig lui ont acquis dans le monde savant un renom justement mérité. M. Albert Kundig se consacra plus spécialement à l'impression de travaux scientifiques et d'ouvrages de luxe. Il vouait un soin tout spécial aux publications périodiques. Grâce à son bienveillant appui, beaucoup d'entre elles purent continuer à paraître dans les circonstances difficiles dues à la guerre mondiale.

L'Enseignement Mathématique fut imprimé dans ses ateliers depuis 1904. Pendant près de 20 ans, nous avons largement bénéficié de sa précieuse collaboration. Nous garderons d'Albert Kundig un souvenir reconnaissant et nous réitérons ici à la famille l'expression respectueuse de nos sentiments de regrets qui, nous en sommes certains, garant marte rés

certains, seront partagés par tous les lecteurs de la Revue.

Au nom de la Rédaction H. Fehr

BIBLIOGRAPHIE

Index Generalis 1922-1923. Annuaire général des Universités, The Yearbook of the Universities, publié sous la direction de R. de Montessus de Ballore, docteur ès sciences et lauréat de l'Institut. Ouvrage honoré d'une souscription du Ministère de l'Instruction publique. — Un volume in-16 double-couronne de 2111 pages : broché, 50 fr.; relié, 55 fr.; Gauthier-Villars et Cie, Paris.

L'Index Generalis, qui paraît annuellement, indique l'organisation des Universités et des Ecoles Supérieures du monde entier avec les noms des Professeurs et l'indication des cours professés. Plus de 900 pages sont consacrées à ce Chapitre. Les Chapitres concernant les Universités et les