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24 M. WINANTS

§ 6. — Sections sphériques.
35. — Nous allons étudier rapidement la courbe d’intersec-
tion de la surface:
xyz = p? (1
et de la spheére:
X2 4 g2 - 22 = 42 | (2)

En éliminant z entre (1)) et (2), on trouve:
(xz + yz - (12)1‘2)‘2 "l_ P6 — 0 . (3)

L’intersection compléte des surfaces (1) et (2) est une courbe
gauche algébrique du 6e ordre, composée de quatre parties,
dont chacune entoure la projection d’un ombilic sur la sphere.

Cette courbe gauche posséde encore la symétrie du tétraédre
régulier. |

Elle se projette sur le plan des Z, y suivant la sextique que
représente 'équation (3). On a nécessairement :

x2+3.2_a2<0'

Done, la sextique, qui se compose évidemment de quatre
ovales, est intérieure au cercle: z* Yy = a’.

La courbe ne rencontre pas les axes.

36. — En résolvant 1’équation (3), on obtient:

2xy? = x(a® — x%) £ YVat — 242x* + a*a? — 4p® .
Examinons le cas ot lon aurait: a — pV'3. La quantité
subradicale deviendrait alors:
(22 — p2)? (a2 — 4p?) .

Or (35) x est moindre que @ ; donc: 2 < 3p* La sextique
se réduit a quatre points isolés: ce sont les projections des ombi-
lics sur le plan des z, .

37. — L’équation polaire de la sextique est la suivante:
¢t sin®0 cos?(a? — p2) = Pt (4)
ou bien:
6
sin?26 — ip

p*(a? — p?)
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38. — Le maximum et le minimum de @ correspondent au
minimum de sin 20, don¢ au maximum de: :

pt(a® — ¢%) = (p°)7 XX (a® — %) .

Les rayons vecteurs correspondants sont donnés par I’équa-
tion:

F_a—g o
2 1 - 3’
done:
. 2
o= a 3 .
On trouve ensuite:
. 4p6 27p
sm226m—_—_ 7 I 5
§a4 > ~3—a2

d’otu:

511126 = = ap V3 +(P\/3)

Cette valeur est toujours acceptable quand la sphére coupe la
surface proposée, ¢’est-a-dire quand on a:

a=pVs .

Les valeurs de 6,, et les valeurs correspondantes de o pourront
eétre construites & I’aide de la régle et du compas. On voit aisé-
ment qu’on obtient ainsi huit points dé la sextique, et les tan-
gentes en ces points. De 1’origine, on peut donc mener huit tan-
gentes a la courbe. Ce sont, d’ailleurs, quatre bitangentes.

39. — Recherchons le maximum et le minimum de p. Soit
F(p, ) = 0 I’équation (4) du n° 37. On a:

Ok OF
b_o—d‘o -+ ﬁdﬂ s ) o

)

Mais dp = 0, donec L = 0, ¢’est-a-dire:

0
k

4

bz}

o, .
—6(sm26 cos?0) = 0 , d’ou 0 =

Comme la sextique ne rencontre pas les axes coordonnés (35),
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on ne peut donner & k£ que des valeurs impaires. Il suffit d’exa-

. T
miner: 0 = 7.

L’équation polaire de la sextique (37) donnera les valeurs
correspondantes de p:
phla® —g%) = 4p° ,
ou bien:
pf = a2p4-—|— 4p6 — 0 .

Cette équation, du troisiéme degré en p?, admet touj'ours une
racine négative, qui est & rejeter. Les deux autres sont positives
quand on a: ¢ = p\/3.

40. — La sextique admet 4. C; = 24 bitangentes.

De la discussion qui précede, ainsi d’ailleurs que de son équa-
tion cartésienne (35), il résulte qu’elle admet la symétrie du
carré. Dans son plan, elle possede quatre axes de symétrie A*® ;
perpendiculairement a son plan, un A*.

41. — On arriverait a la méme sextique en étudiant la sur-
face:

xyz = — p* .

Ce fait s’explique, de soi-méme, si1’on se rappelle que la symé-
trie tétraédrique est une hémiédrie de la symétrie cubique.

42. — Nous allons chercher ’équation de la sextique gauche
(35) en coordonnées sphériques trilinéaires absolues. Nous

emploierons un systeme que

Z nous a suggéré M. Louis

FouaRrGe, chargé de cours a
I’Université de Liége.

Une sphére, ayant son
centre a l'origine, coupe le
triedre coordonné suivant
un triangle trirectangle ABC,

~-X que nous prendrons comme
figure de référence. D’un
point quelconque M, nous
| abaisserons, sur les cotés du
Y triangle fondamental, les
= perpendiculaires o, 3, y. Soit

Fig. 7.
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OB = OC = m le rayon de la sphére. On a encore
m. Les formules de transformation sont:

I

X —=msina ; y:msin@; - z=—msiny .
De I'équation de la sphére: 2* + y* 4 2> = m’, on déduit:
sin?a 4 sin?f + sin?y =1, (1)

Un systéme de coordonnées sphériques n’est entiérement
déterminé que si I'on connait ’équation d’un grand cercle.

Dans le n® 1 de la 14¢ année (novembre 1911) du Bulletin
scientifigue de I'Association des Eléves des Ecoles Spéciales,
(A.E.E.S., Université de Liége), MM. V. LEJEUNE et A. SCHLAG
ont donné I’équation d’un grand cercle, en employant les coor-

données:
0o = BM ; o = angle ABM .

Cette équation peut s’écrire (loc. cit., page 17):

= : 2
~ Vecosw + Wsinw

o

tg

De la considération des triangles sphériques rectangles MRB,
MPB, on tire:

siny = sinp sinw , sina = sinp cos w ;

Iéquation (2) peut s’écrire:

sin p

8 = Voino + Wsing '

ou:
Vsina 4+ Wsiny = cosp :
mais on a:

’équation d’un grand cercle peut donc s’écrire:
asina + bsinf 4 csiny = 0 . - (3)

On en conclurait aisément I’équation du grand cercle passant
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par deux points donnés de la spheére, puis celle du grand cercle
tangent a une courbe donnée en un point donns.

Si le point M doit appartenir a la surface tétraédrique que nous
etudions, il faudra qu’on ait:

3
sin o . sin § . sin g :—P—§ . (4)
: m

En discutant les signes, on verra que Péquation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la cour-
bure totale, en un point ordinaire d’une surface, est 'inverse
du produit des rayons de courbure principaux (19). Elle est sus-
ceptible de I’expression suivante:

%z o2z 02z \?
_ ot T \oxoy
- 0z \? 0z\2 )? °
1 had s
() )

44. — Appliquons cette formule & la surface:

xyz =— p3 .

Les dérivées partielles ont été données plus haut (22). On a,

~apres un calcul facile:

P 3pSatytst _ 3 "
12 ) 2.2 9.9 2.9 (27 1 1 1 )2
p {34 + z%x +x3} p63;_2+_‘y_2+?$
3,8
= P (2)

b‘zzz + 2%x? x?y? }2 '

Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points ellip-
tiques. |

45. — De la formule (1), on déduit que ¢’est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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