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24 M. WINAN TS

i 6. — Sections sphériques.

35 nous allong étudier rapidement la courbe d'intersec-
tion de la surface:

xyz p3
et de la sphère:

x'2 + y2 -j- z2 a2 (<2)

En éliminant s entre (1)) et (2), on trouve:

(x2 +j2 —+ (3,

L'intersection complète des surfaces (1) et (2) est une courbe
gauche algébrique du 6e ordre, composée de quatre parties,dont chacune entoure la projection d'un ombilic sur la sphère.

Cette courbe gauche possède encore la symétrie du tétraèdre
régulier.

Elle se projette sur le plan des x, y suivant la sextique que
représente 1 équation (3). On a nécessairement:

*2 + J2 — a2 < 0

Donc, la sextique, qui se compose évidemment de quatre
ovales, est intérieure au cercle: xl + y2 a2.

La courbe ne rencontre pas les axes.
36. — En résolvant l'équation (3), on obtient:

2 xfx{a* — x2) ±y.x6— 2a2x4 + a*x2 — 4//«

Examinons le cas où l'on aurait: 37 La quantitésubradicale deviendrait alors :

(x2 — p2)2(x2 4p2)

Or (35) x est moindre que a ; donc: x* < 3 La sextique
se réduit à quatre points isolés: ce sont les projections des ombi-
lies sur le plan des x, y.

37. — L'équation polaire de la sextique est la suivante:
p4 sin2 0 cos2 6 (a2 — p2) — pQ f ^ou bien:
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38. — Le maximum et le minimum de 9 correspondent au
minimum de sin 29, donc au maximum de:

p4(a2 — p2) (p2)2 X (a2 - p2)

Les rayons vecteurs correspondants sont donnés par l'équation:

donc:

a\/i-
On trouve ensuite :

• > Ofl V6 27P6sir 2 0 — -7 — — —V-4.1. a6
— rt4 x — a2

d'où:
dp3 V3"

sin 2 6,„ ± ±Ç£)'
Cette valeur est toujours acceptable quand la sphère coupe la

surface proposée, c'est-à-dire quand on a:

a ^ p •

Les valeurs de 9m et les valeurs correspondantes de p pourront
être construites à l'aide de la règle et du compas. On voit
aisément qu'on obtient ainsi huit points dé la sextique, et les

tangentes en ces points. De l'origine, on peut donc mener huit
tangentes à la courbe. Ce sont, d'ailleurs, quatre bitangentes.

39. — Recherchons le maximum et le minimum de p. Soit
F(p, 9) 0 l'équation (4) du n° 37. On a:

^ + ^9 0;
öp

^ ^ 0 0

Mais dp 0, donc ~ 0, c'est-à-dire:

^(sin26 cos2 6) 0 d'où 6 ~du 4

Comme la sextique ne rencontre pas les axes coordonnés (35),
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on ne peut donner à k que des valeurs impaires. Il suffit d'examiner

: 9
4

L'équation polaire de la sextique (37) donnera les valeurs
correspondantes de p :

p4(fl2 _ p2) -- 4/?6

ou bien:
p6 _ a2p4 + 4^6 _ 0

Cette équation, du troisième degré en p2, admet toujours une
racine négative, qui est à rejeter. Les deux autres sont positives
quand on a : a ^ pl/3.

40. — La sextique admet 4 Q 24 bitangentes.
De la discussion qui précède, ainsi d'ailleurs que de son équation

cartésienne (35), il résulte qu'elle admet la symétrie du
carré. Dans son plan, elle possède quatre axes de symétrie A2 ;

perpendiculairement à son plan, un A4.
41. — On arriverait à la même sextique en étudiant la

surface:

xyz — — p3

Ce fait s'explique, de soi-même, si l'on se rappelle que la symétrie

tétraédrique est une hémiédrie de la symétrie cubique.
42. — Nous allons chercher l'équation de la sextique gauche

(35) en coordonnées sphériques trilinéaires absolues. Nous
emploierons un système que
nous a suggéré M. Louis
Fouarge, chargé de cours à

l'Université de Liège.
Une sphère, ayant son

centre à l'origine, coupe le
trièdre coordonné suivant
un triangle trirectangle ABC,
que nous prendrons comme
figure de référence. D'un
point quelconque M, nous
abaisserons, sur les côtés du
triangle fondamental, les

perpendiculaires a, /3, y. Soit
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OA OB OC — m le rayon de la sphère. On a encore

OM m. Les formules de transformation sont:

X zzz m sin a ; y zzz m sin ß ; s zzz: m sin y

De l'équation de la sphère: x" + yf1 + z2 on déduit:

sin2 a -f- sin2 ß -J- sin2 y 1 9

Un système de coordonnées sphériques n'est entièrement
déterminé que si l'on connaît l'équation d'un grand cercle.

Dans le n° 1 de la 14e année (novembre 1911) du Bulletin

scientifique de l'Association des Elèves des Ecoles Spéciales,

(A.E.E.S., Université de Liège), MM. V. Lejeune et A. Schlag
ont donné l'équation d'un grand cercle, en employant les

coordonnées:

p rr BM ; w z= angle AB M

Cette équation peut s'écrire (loc. cit., page 17):

te o — : (2)
1 V cos to -j- W sin to

De la considération des triangles sphériques rectangles MRB,
MPB, on tire:

sin y zzz sin p sin to sin a :zz sin p cos to ;

l'équation (2) peut s'écrire:

sin p^ ^ V sin a -f- W sin y

ou:
V sin a -j- W sin y zzz cos p ;

mais on a:

P ï-Pi
l'équation d'un grand cercle peut donc s'écrire:

a sin a -f- /; sin ß + c sin y zzz 0 (3)

On en conclurait aisément l'équation du grand cercle passant
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par deux points donnés de la sphère, puis celle du grand cercle
tangent à une courbe donnée en un point donné.

Si le point M doit appartenir à la surface tétraédrique que nous
étudions, il faudra qu'on ait:

sin a sin ß sin y —

En discutant les signes, on verra que l'équation (4) représente
les quatre ovales et démontre la symétrie tétraédrique de leur
ensemble.

§ 7. — Etude de la courbure.

43. — En géométrie infinitésimale, on démontre que la courbure

totale, en un point ordinaire d'une surface, est l'inverse
du produit des rayons de courbure principaux (19). Elle est
susceptible de l'expression suivante:

Ö2; y
£ _ àx2 '

ÖJ2 \ùX (V)" J

!1 + (S) + (|)2 j"

44. — Appliquons cette formule à la surface :

xyz 3

Les dérivées partielles ont été données plus haut (22). On a,
après un calcul facile:

^ 3p6xéyAzi 3~ ?q T*=' ++ «vp=j i, + i + JJ
3p6m 12,

j y* z2 4- *2.T2 -j- X2y2 J2

Ces formules nous montrent que la courbure est constamment
positive. Tous les points de la surface sont donc des points
elliptiques.

45. — De la formule (1), on déduit que c'est aux ombilics
que la courbure totale est maxima.

46. — Recherchons les lignes en tous les points desquelles
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