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DÉMONSTRATION D'UN THÉORÈME DE MORLEY

PAR

B. Niewenglowski (Paris).

Je rappellerai, en premier lieu, les propositions suivantes:
1° Soit I le centre du cercle inscrit au triangle ABC.
En appelant A, B, C les angles de ce triangle, on a

BiC A + -? + J 900+ T

2° Réciproquement, si le point I est, à l'intérieur du triangle
ABC et sur la bissectrice de l'angle A et si, en outre,

/\BIG 90° +

le point I est le centre du cercle inscrit au triangle ABC.
Pareillement :

/\ B
AIC 90° + -
/\ C

AIB 90° + -
donc la perpendiculaire MN
menée à AI par le centre I,
fait avec IC et IB les angles

B
GIN -

A

Fig. 1.

/\BIM

3° Supposons toujours que A I soit la bissectrice de l'angle/\ A /\ /\A et posons ABI ß, IBC ß ; ACI y, ICB y Je dis
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que si l'on a:
/\ /\CIN — ß et BIM y

I est le centre du cercle inscrit au triangle ABC.

En effet, les sommes ß + y et ß' + y' ayant, l'une et l'autre

BIC pour supplément, sont égales. On peut donc écrire

B + C
ß + T fs + Y 2

d'où il résulte que

/\ B -|- C nrn A
BIC A + ß + Y AH ^— 90° + -

ce qui démontre la proposition.
Cela posé, soient D, E, F les milieux des côtés d'un triangle

équilatéral H KL. Soient a, /3, y trois angles dont la somme

ex. -f ß + y 60°. A l'intérieur du triangle HEF, construisons

le triangle isoscèle EFD' de façon que les angles HED'

HFD' a; pareillement, traçons les triangles isoscèles DFE'
/\ /\ /\ /\et DEF/ tels que KFE' KDE' - /S; LDF' - LEF' y.
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Appelons A le point de rencontre des droites E'F, F'E.
Dans le triangle AEF, les angles adjacents au côté FF valant
60° + ß et 60° H- y, le troisième angle vaut a. Pareillement, si

B est le point de rencontre des droites D'F, F' D et C celui

des droites D E, F D, on voit que DBF /3, DGF y.
Remarquons maintenant que la droite DH passe par D'

et n'est autre que la bissectrice de l'angle BD'C, puisqu'elle
est perpendiculaire au milieu de FF.

/\ /\D'autre part LDC /3, KDB y ; donc, d'après le lemme
rapporté plus haut (3°), D est le centre du cercle inscrit au triangle
BCD'. On verra de même que E est le centre du cercle inscrit
au triangle ACE' et F le centre du cercle inscrit au triangle
ABF'. On en conclut que les angles A, B, C du triangle ABC
valent 3a, 3/3, 3y respectivement. Les droites AE, AF
partagent l'angle A en trois parties égales, de même BD, BF
pour l'angle B et CD, CE pour l'angle C. On a ainsi démontré
le théorème de Morley:

On partage chaque angle d'un triangle ABC en trois parties
égales par les droites AE, AF; BD, BF; CD, CE qu'on peut
appeler trisectrices. Les trisectrices BD, CD voisines du côté BC
se rencontre en D; les trisectrices CE, AE voisines du côté CA
se coupent en E et enfin les trisectrices voisines du côté AB
se coupent en F.

Le triangle D E F est équilatéral.
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