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DEMONSTRATION D’UN THEOREME DE MORLEY

PAR

B. NiewencrLowsk1 (Paris).

Je rappellerai, en premier lieu, les propositions suivantes:
10 Soit I le centre du cercle inscrit au triangle ABC.
En appelant A, B, C les angles de ce triangle, on a

N B C A
B 3 — A — _— = o T
IC + 5+ 5= 90° + 3
20 Réciproquement, si le point I est, & Pintérieur du triangle g

ABC et sur la bissectrice de I’angle A et si, en outre,

A\
BIC = 90° +% 1

le point I est le centre du cercle inscrit au triangle ABC.
Pareillement:

N B
AIC = 90° + 7, M
/N C
AIB = 90° 4
2 l N
donc la perpendiculaire MN C
menée & Al parle centre I, Fig. 1.

fait avec IC et IB les angles

AN /\
C[N:g, BIM:%

3% Supposons toujours que A I soit la bissectrice de I'angle
N N /\ N\ ,
A et posons ABI =, IBC = '; ACl =y, ICB ='. Je dis
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que si 'on a:

/\ AN
CIN = § et BIM — vy

I est le centre du cercle inscrit au triangle ABC.
En effet, les sommes 3 -+ y et g’ + 5 ayant, une et autre

/N ,
BIC pour supplément, sont égales. On peut donc écrire

. B+C
fHy =0+ =—7—
d’ou il résulte que
N
{ BIC:1X+[3+Y:A+_]3_—;_9:900+%

| ce qui démontre la proposition.

: Cela posé, soient D, E, F les milieux des cotés d’un triangle
équilatéral HKL. Soient «, 8, y trois angles dont la somme
« + B + y = 60°. A l'intérieur du triangle HEF, construisons

%
le triangle isoscéle EFD’ de facon que les angles HED'
AN
— HFD' = «; pareillement, tracons les triangles isoscéles DFE'
, N\ N\ A AN
et DEF’ tels que KFE' = KDE' = §8; LDF' = LEF' = 4.

A
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~Appelons A le point de rencontre des droites E'F, F'E.
Dans le triangle AEF, les angles adjacents au c¢oté EF valant
60° + B et 60° + +, le troisieme angle vaut «. Pareillement, si
B est le point de rencontre des droites D'F, F'D et C celui

. N N
des droites D' E, E'D, on voit que DBF = 3, DCF = 4.
Remarquons maintenant que la droite DH passe par D’
et n’est autre que la bissectrice de I’angle BD'C, puisqu’elle
est perpendiculaire au milieu de EF.

, 2, %

D’autre part LDC = 3, KDB = 5 ; donc, d’apreés le lemme
rapporté plus haut (3°), D est le centre du cercleinscrit au triangle
BCD'. On verra de méme que E est le centre du cercle inscrit
au triangle ACE’ et F le centre du cercle inscrit au triangle
ABF'. On en conclut que les angles A, B, C du triangle ABC
valent 3u«, 383, 3y respectivement. Les droites AE, AF par-
tagent I’angle A en trois parties égales, de méme BD, BF
pour 'angle B et CD, CE pour I’angle C. On a ainsi démontré
le théoréme de Morley:

On partage chaque angle d’'un triangle ABC en trois parties
égales par les droites AE, AF; BD, BF; CD, CE qu’on peut
appeler trisecirices. Les trisectrices BD, CD voisines du ¢6té BC
se rencontre en D; les trisectrices CE, AE voisines du ¢6té CA
se coupent en E et enfin les trisectrices voisines du coté AB
se coupent en F.

Le triangle D E F est équilatéral.

- oA
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