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DEMONSTRATION DU THEOREME DE STACKEL
PAR L’ELIMINATION DU TEMPS
ENTRE LES EQUATIONS DE LAGRANGE

PAR

M. Emile Turrikre (Montpellier).

Le théoréme de LiouviLLE a été généralisé par M. P. STECKEL
et par M. E. Goursat?® sous la forme suivante:

Soient A, ,B,,C,...Q, des fonctions d'un seul paramétre
g5 Ay, By, Goeot Qy des fonctions dun seul parametre g,;
A, ,B;, G, .. Qg des fonctions d’un seul parametre ¢,; ete.

Soient

AL A A, U Q
Am’Bl B, B, . B B, B |
= e , D = ‘ :
GGG c oG oC
T i

M,, M,, etc., étant les mineurs relatifs aux éléments des pre-
mieres lignes de ces déterminants, soient enfin

2 2 e
. (11 (/2 qg 2 d(ld D
I = A |-+ = + =2 + ... = == = =
A <M1 Ty, T W > ‘ <’]a dt> - U=3
L’intégration des équations de la dynamique avec les expres-

sions précédentes de l'énergie cinétique T et de la fonction des
forces U, pour un systéme a k paramétres ¢, ¢,, g, ... , est réduc-

t P. Srarcker. Sur une classe de problémes de dynamique, C. R., t. CXVI, ¢ mars 1893,
p. 485-487.

E. Goursat. Sur une classe de problémes de dynamique, C. R., t. CXVI, 8 mai 1893,
p. 1050-1051.

P. Srarckur. Sur des problémes de dynamique qui se réduisent a des quadratures,
C. R., t. CXVI, 5 juin 1893, p. 1284-1286.

L’Enseignement mathém., 22¢ année, 1921 et 1922,
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tible & K* quadratures; K (K — 1) de ces quadratures déter-
minent les relations entre les paramétres; K quadratures entrent
dans I'expression du temps.

Le théoréme a été démontré comme application de la méthode
de JacoBi. Je vais en donner une démonstration nouvelle,
fondée sur I’emploi des équations obtenues apreés 1’élimination
du temps entre les équations de Lacrance. Cette démonstra-
tion généralise celle du théoréme de LiouviLLE, exposée dans un
précédent travail *.

Je vais établir la démonstration avec trois parameétres g,, q,
et ¢;, mais sous une forme telle que la démonstration soit iden-
tique dans le cas général de K paramétres.

Le dernier parameétre, ¢,, étant pris pour parameétre indépen-
dant avec

dg, dq,
=, =g,
dq, ! dq, 2

et en écrivant simplement ¢ pour ¢,, je poserai :

2 2
oo dq\? 9 o __7]1 "y 1
1_®<Zﬁ) Q2 =0.U = DH avec H___M]+M—2+Ws..

Je supposerai nulle tout d’abord la constante % de Pintégrale
des forces vives, T— U =% Les K-—1 =2 équations de
Lagrange, aprés élimination du temps, sont les suivantes :

o) =50 (i) = 55
dq \on, _691’ dq \om, —092.

En remarquant que

0  D=n,  2Q

D
o, T QM o, T QM
elles deviennent :
d (D) _ oQ d (D) __ 2Q
dg\Q M,/ " vg, ' dg\QM,) T dq, "

! Démonstration du théoréme de LiouviLLe par Iélimination de temps entre les équa-
tions de LAGRANGE. L’Enseignement mathématique, t. XXI1I, 1921-1922, p. 277-285.
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La premiere s’écrit encore :

oD 7, d <D n1> _d <D2 ‘01> g 0Q Do, 0(QY)
/ {

Q M, dg\QM,) ~ dqg 6254”: Q Moq, — Q®M, dq, ’

¢’est-a-dire:

d 211_ M 0 (DH)
T \ W) SHN, o,
1

1

On obtient ainsi le systeme suivant de trois équations équi-
valant au systéme des deux premiéres d’entre elles:

2~
SN
T O
M
[l
- =
Zls
</
Lg
vz

d /D 1\ _ 1 o(DH)
dg \H'y2 | = HM, og, °
: :
Je poserai maintenant :

2 2
D 7 D 7, D1
Ay =Moo Ay =% g~ Q=hk.
1 2

Les dérivées de Q,, Q,, Q; par rapport aux variables respectives
1, ¢, q5 seront désignées par Q., Q. Q3 et, par suite:

' dQ / dQ,
1]1Q1:—z{'al’ T)2Q2:7“.

Avec ces notations, les équations deviennent :

d A / oH oD
%l’{"nnyL: Th <D +H >1

HM, \ ™ oq, YA
dlz ’ TIQ bH E)D
dg + % Q, = HMZ<D%?}; + HS};) ’
d 1 oH oD

~ s P oH il
dq T QS_HM (D E)(/3“’_Hbqa>.
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Prenons la premiére. Comme Q,, Q, et M, ne sont .pas fonc-
tions de ¢,, cette équation devient : |

d i
M, dq — + Ml"hQ

elle se réduit a la suivante :

Ml%l—)\—l ‘ql[)\2b—M—? )\391\—13]:0 .
q 09, 04,

Finalement, nous obtenons le systéme suivant de trois équa-
tions :

1 1 2 3
i Rk RO Wie- SO Wihutuit. = (I
0, dq 26611 ®og,
LMy Myddy oMy
g, ‘nz dgq " 04,
SISV S
0q; 0q, d(l

avec l'identité
WM, + M, + M, = 0,

(qui résulte de la définition méme des 2).
La forme de cette identité conduit & poser :

A, = BB, +vC, , A, = BB, +vGC, . A, = BB, +vC; ;
puisque :

B,M, + B,M, + B,M, =0, CM, + CM, + CM, = 0 ;

3 et ¥ sont, pour le moment, des fonctions arbitraires. Les équa-
. « o 3 \ M, oM oM
tions linéaires et homogenes en —2, —, —%,
Ny 94 044

M, d), 5 oM, ) oM,

"4 d—‘] 2% 3b‘:’1 =Y
M dB, oM
B i,
’11 d’/ -t ? a)’11 B 30’11 "
M dC1 L C S M3 —0

‘ 711 2 091 : 0q, .
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entrainent I’équation :

i a”\]
—1 X A
df/ 2 3
B,
— B. B = 0 ,
{ d([ 2 3
% dc, .
—L1  C 3
d([ 2 3
ou encore :
- d B dy
il — =0
B, g + C, dq
Pour la méme raison
dp dy dp dy _
Bzz-q—_y(:g%_o, Bg-@juc?,@_

Ces conditions exigent que (3 et » soient des constantes. En
remontant alors a la définition des A, les équations deviennent :

2
D Q 4+ 8B, + 10
HMi_ 1 1 T o
D
HT\/PZ Q2 + lBBfl +YC2 ’
1‘2
D1
E\'&;:Q3+BB3+YC3’
s

avec deux constantes arbitraires (5 et », ou encore:

2 2
U _ " . 1
MI(Q, + BB, +7C)  MQ, + BB, +vCy)  MIQ, + BB, +vCy)

.+ dg, . dq,
M, VQ + BB, ++C M, VQ, + EB, +1C,

+ i dqy .
M, VQ3 + BB, ++C;
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Ces derniéres relations conduisent aux équations (en prenant
les signes +):

B, dql 4 B2 dgq, n B, dqs —0,
VQ, + BB, +1C, VQ, + 5B, ++C, VQ; + 6B, +1C,
G, dq, C,dg, C, dq, s

+
VQ1+§B1+YC1 VQ2+BB2+YC2 VQ3+QB3+YC3

intégrables par six quadratures.
Pour simplifier 1’écriture, J’al pris 2 = 0. Dans le cas général,
il suffit de changer U en U -+ h, c’est-a-dire D en D 4 A, ou

encore Q, en Q, -+ 2A,, Q, en Q, + 2A, et Q; en Q, 4 %A,.
Le probléme est ainsi résolu par les formules avec six quadra-

tures suivantes; ces deux équations entre les seules coordonnées
définissent les trajectoires :

L B, do,
VQ1+hA1 +@81+YC1 VQ2 +hA2+@Bz+YC2

-+ f B, 44, = constante ,
VQ, + kA, + 5B, F vC,

Gy, v f C, dg,
VQI + kA, + 8B, + ¢C, VQz + /_1A2 + BB, + vG,

+f Cs dg, —— = constanle ;
VQ, + kA, + 5B, + ¢C,

(k, B, y sont trois constantes arbitraires).
La loi du temps est ensuite déterminée par le théoréme des
forces vives. L’intégrale des forces vives est ici :

2
T:_AH.(iE/-?):U—[—k,

di
d’ou
(dt)?__ AH A D+ kA
“s/ U+ kT D+ hATNKQ, + KA, + BB, + 1C,)
car on a :
D+ hA
=S = MIQ, + BA, + BB, + G ;

Iexpression de dt est donc :

d%

dt = (A, M, + A,M, + A, M)
(1 1 2 2 3 3 Ma'\/Q?+hA3+BB3+YC3
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. . dg, dgq,
Ce qui, en vertu des expressions de —=*, —=

0 g devient (& une
3 13

constante additive pres):

f A, dyg, f Ay dyg,
i — -+
VQ1 + kA, + BB, + vy VQ2 + hrA, + BB, + vGy

[. A, dq,
+ :
¢ \/Qg + hA; + BBy + G

D’une maniére générale, on aurait K — 1 équations entre les
seuls paramétres, chacune contenant K quadratures; le temps
est ensuite donné par K quadratures. En tout, K* quadratures
indépendantes. '

Les résultats obtenus sont identiques a ceux fournis par 1’ap-
plication de la méthode de JacosI.

Le théoréme de LiouviLLE est un cas particulier du théo-
réme de StackEeL. Il suffit de prendre des valeurs constantes
pour les B, pour les C et, par suite, pour les M. Dans le cas par-
ticulier du théoréme de LiouviLrLe, la démonstration s’arréte
avant I'introduction des A ; M,, M,, M, étant réduits a 'unité,
H étant indépendant de ¢, ¢, ... on a simplement

d (DN _ o 4
dg \Hyz) = "= g -
1

(Cest le résultat de ma précédente note. Les fonctions A ici
introduites sont constantes, dans le cas de théoréme de Liou-
VILLE.

20 mars 1922.
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